Numărul binar fără semn (baza doi) 10 0110 0001 convertit în întreg pozitiv în sistem zecimal (baza zece)

Cum convertești binar fără semn (baza 2):
10 0110 0001(2)
în întreg pozitiv (fără semn) în sistem zecimal (în baza 10)

1. Mapează digiții numărului binar fără semn cu puterile lui 2 corespunzătoare ordinului de mărime:

    • 29

      1
    • 28

      0
    • 27

      0
    • 26

      1
    • 25

      1
    • 24

      0
    • 23

      0
    • 22

      0
    • 21

      0
    • 20

      1

2. Înmulțește fiecare bit cu puterea lui 2 corespunzătoare, apoi însumează termenii:

10 0110 0001(2) =


(1 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20)(10) =


(512 + 0 + 0 + 64 + 32 + 0 + 0 + 0 + 0 + 1)(10) =


(512 + 64 + 32 + 1)(10) =


609(10)

Concluzia:

Numărul 10 0110 0001(2) convertit din binar fără semn (baza 2) în întreg pozitiv (fără semn) în sistem zecimal (în baza 10):


10 0110 0001(2) = 609(10)

Spațiile folosite pentru a grupa digiții numerelor: pentru binar, câte 4.

Convertește numere binare fără semn (baza doi) în întregi pozitivi în sistem zecimal (baza zece)

Cum convertești un număr binar fără semn (baza doi) într-un întreg pozitiv din baza zece:

1) Înmulțește fiecare digit al numărului binar cu puterea lui 2 corespunzătoare ordinului de mărime.

2) Adună toți termenii pentru a obține numărul întreg în baza zece.

Ultimele numere binare fără semn convertite în întregi pozitivi în sistem zecimal (baza zece)

Cum să convertești numere binare fără semn din sistem binar în cel zecimal? Pur și simplu convertește din baza doi în baza zece.

Pentru a înțelege cum să convertești un număr din baza doi în baza zece, cel mai ușor e să o facem printr-un exemplu - convertește numărul din baza doi, 101 0011(2), în baza zece:

  • Scriem mai jos numărul binar, în baza doi, iar deasupra fiecărui bit ce alcătuiește numărul, scriem puterea lui 2 (baza de numerație) corespunzătoare ordinului de mărime, începând cu zero, adică din partea dreaptă a numărului și mergând crescător cu câte o unitate spre stânga:
  • puteri ale lui 2: 6 5 4 3 2 1 0
    digiți: 1 0 1 0 0 1 1
  • Construiește reprezentarea numărului pozitiv în baza 10, luând fiecare digit al numărului binar, înmulțindu-l cu puterea lui 2 corespunzătoare și însumând apoi toți termenii:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Numărul binar fără semn (baza 2), 101 0011(2) = 83(10), întreg pozitiv (fără semn) în baza 10