Convertor din sistem binar în reprezentarea pe 64 biți, precizie dublă, în virgulă mobilă în standard IEEE 754: convertește în numere zecimale în baza zece (double)

Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Un număr în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 e format din trei elemente: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 100 0000 0100 - 0000 0110 1110 0100 0101 1011 0110 1111 1110 1011 0001 0101 1100 = 32,861 502 527 581 905 042 097 787 372 767 925 262 451 171 875 22 iul, 07:48 EET (UTC +2)
0 - 100 0001 0111 - 1011 1110 1100 0011 1000 1110 1101 0001 1001 1001 1011 0111 1000 = 29 279 118,818 751 782 178 878 784 179 687 5 22 iul, 07:43 EET (UTC +2)
1 - 111 1000 0000 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = -2 113 178 124 542 660 516 189 557 339 372 302 052 878 033 334 815 932 256 526 868 239 262 724 567 858 187 515 233 196 359 848 647 004 865 560 168 702 317 211 680 903 191 193 919 328 450 083 989 269 961 554 447 542 240 071 001 947 834 191 993 408 774 294 680 672 825 063 561 256 483 617 856 618 302 092 112 309 707 397 302 279 575 951 919 786 371 116 097 863 680 22 iul, 07:36 EET (UTC +2)
0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0111 = 59 923 104 495 410 546 889 646 085 815 632 588 257 038 507 938 398 269 653 237 197 348 057 071 123 060 674 687 668 591 348 836 393 548 356 417 065 254 640 197 073 320 291 208 932 573 934 599 046 826 438 547 619 020 950 181 883 664 425 481 347 792 796 002 352 632 039 687 053 228 445 057 356 431 980 187 571 581 391 496 187 528 986 461 577 407 295 230 078 639 323 305 944 126 919 121 265 912 362 741 490 778 112 22 iul, 07:35 EET (UTC +2)
0 - 100 0000 0001 - 1110 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 7,703 125 22 iul, 07:35 EET (UTC +2)
1 - 000 0000 0100 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 1 22 iul, 07:33 EET (UTC +2)
1 - 000 0011 0101 - 1110 1010 1010 1111 1010 1010 0010 0101 0111 0100 0101 0101 0110 = -0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 192 073 776 688 369 1 22 iul, 07:32 EET (UTC +2)
0 - 000 0011 1000 - 0000 0000 0000 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 801 715 891 630 412 7 22 iul, 07:29 EET (UTC +2)
0 - 101 1111 0000 - 0011 0010 0110 1110 1100 0000 0000 0000 0000 0000 0000 0000 0000 = 489 782 056 179 002 127 154 268 624 972 554 137 790 967 682 696 206 651 257 321 142 444 983 260 904 518 897 320 345 245 580 991 977 577 164 306 617 896 409 989 246 966 972 238 416 590 702 437 728 256 22 iul, 07:22 EET (UTC +2)
0 - 100 0000 0000 - 1001 1000 1000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 = 3,191 665 649 414 062 5 22 iul, 07:20 EET (UTC +2)
0 - 111 1111 1111 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = QNaN, Quiet Not a Number 22 iul, 07:01 EET (UTC +2)
0 - 100 0000 1100 - 0010 1011 0000 0111 0110 1000 0000 0000 0000 0000 0000 0000 0000 = 9 568,925 781 25 22 iul, 07:00 EET (UTC +2)
0 - 100 0001 0011 - 0000 1101 1111 1010 1110 0111 0110 0010 1101 1111 0100 1010 1100 = 1 105 838,461 638 729 088 008 403 778 076 171 875 22 iul, 06:59 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)