Cu semn: Binar ↘ Întreg: 0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000 Numărul binar cu semn convertit (transformat) și scris ca întreg din sistemul zecimal (baza zece)

Numărul binar cu semn (în baza doi) 0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000(2) în întreg (cu semn) în sistem zecimal (în baza zece) = ?

1. Este acesta un număr pozitiv sau negativ?

0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000 este reprezentarea binară a unui întreg pozitiv, pe 64 biți (8 Octeți).


Într-un binar cu semn, primul bit (cel mai din stânga) este rezervat pentru semn,

1 = negativ, 0 = pozitiv. Acest bit nu contează când e calculată valoarea absolută.


2. Construiește numărul binar fără semn.

Elimină primul bit (cel mai din stânga), acesta e rezervat pentru semn:


0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000 = 000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000


3. Mapează digiții numărului binar fără semn cu puterile lui 2 corespunzătoare ordinului de mărime:

  • 262

    0
  • 261

    0
  • 260

    0
  • 259

    0
  • 258

    0
  • 257

    0
  • 256

    0
  • 255

    0
  • 254

    0
  • 253

    0
  • 252

    0
  • 251

    1
  • 250

    1
  • 249

    0
  • 248

    0
  • 247

    1
  • 246

    0
  • 245

    1
  • 244

    0
  • 243

    1
  • 242

    1
  • 241

    1
  • 240

    1
  • 239

    0
  • 238

    0
  • 237

    0
  • 236

    1
  • 235

    1
  • 234

    1
  • 233

    1
  • 232

    0
  • 231

    0
  • 230

    0
  • 229

    1
  • 228

    1
  • 227

    1
  • 226

    1
  • 225

    1
  • 224

    1
  • 223

    1
  • 222

    0
  • 221

    0
  • 220

    1
  • 219

    1
  • 218

    1
  • 217

    1
  • 216

    1
  • 215

    1
  • 214

    0
  • 213

    1
  • 212

    1
  • 211

    0
  • 210

    1
  • 29

    0
  • 28

    1
  • 27

    0
  • 26

    0
  • 25

    0
  • 24

    0
  • 23

    0
  • 22

    0
  • 21

    0
  • 20

    0

4. Înmulțește fiecare bit cu puterea lui 2 corespunzătoare, apoi însumează termenii.

000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000(2) =


(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 1 × 251 + 1 × 250 + 0 × 249 + 0 × 248 + 1 × 247 + 0 × 246 + 1 × 245 + 0 × 244 + 1 × 243 + 1 × 242 + 1 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 1 × 236 + 1 × 235 + 1 × 234 + 1 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 1 × 229 + 1 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 1 × 224 + 1 × 223 + 0 × 222 + 0 × 221 + 1 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 1 × 215 + 0 × 214 + 1 × 213 + 1 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =


(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 0 + 0 + 140 737 488 355 328 + 0 + 35 184 372 088 832 + 0 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 1 099 511 627 776 + 0 + 0 + 0 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 0 + 0 + 0 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 8 388 608 + 0 + 0 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 0 + 8 192 + 4 096 + 0 + 1 024 + 0 + 256 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)(10) =


(2 251 799 813 685 248 + 1 125 899 906 842 624 + 140 737 488 355 328 + 35 184 372 088 832 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 1 099 511 627 776 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 8 388 608 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 8 192 + 4 096 + 1 024 + 256)(10) =


3 570 244 171 838 720(10)

5. Dacă e nevoie, ajustează semnul numărului întreg în funcție de primul digit (cel mai din stânga) al numărului binar cu semn:

0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000(2) = 3 570 244 171 838 720(10)

Numărul 0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000(2) convertit din binar cu semn (din baza doi) și scris ca întreg în sistem zecimal (în baza zece):
0000 0000 0000 1100 1010 1111 0001 1110 0011 1111 1001 1111 1011 0101 0000 0000(2) = 3 570 244 171 838 720(10)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Ultimele numere binare cu semn convertite (transformate) în întregi cu semn în sistem zecimal (numere scrise în baza zece)

Cum convertești numere binare cu semn din sistem binar în cel zecimal

Pentru a înțelege cum să convertești un număr cu semn din sistem binar în cel zecimal (baza zece), cel mai ușor e să o facem printr-un exemplu - convertește numărul binar, 1001 1110, în baza zece:

  • Într-un binar cu semn, primul bit (cel mai din stânga) e rezervat pentru semn, 1 = negativ, 0 = pozitiv. Acest bit nu contează când e calculată valoarea absolută (fără semn). Primul bit al numărului nostru binar este 1, deci numărul este negativ.
  • Scriem mai jos numărul binar, în baza doi, iar deasupra fiecărui bit ce alcătuiește numărul, scriem puterea lui 2 (baza de numerație) corespunzătoare ordinului de mărime, începând cu zero, din partea dreaptă a numărului, mergând crescător cu câte o unitate spre stânga, ignorând primul bit (cel mai din stânga, cel ce reprezintă semnul):
  • puteri ale lui 2:   6 5 4 3 2 1 0
    digiții: 1 0 0 1 1 1 1 0
  • Construiește reprezentarea numărului negativ în baza 10, luând fiecare digit al numărului binar, înmulțindu-l cu puterea lui 2 corespunzătoare și însumând apoi toți termenii, ținând cont de semnul numărului:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Numărul binar cu semn, 1001 1110 = -30(10), întreg negativ (cu semn) în baza 10