Din binar cu semn în întreg: numărul 1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 transformat și scris ca număr întreg în baza zece, în sistem zecimal

Numărul binar cu semn 1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000(2) scris ca număr întreg în baza zece, în sistem zecimal

1. Este acesta un număr pozitiv sau negativ?

1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 este reprezentarea binară a unui întreg negativ, pe 64 biți (8 Octeți).


Într-un binar cu semn, primul bit (cel mai din stânga) este rezervat pentru semn,

1 = negativ, 0 = pozitiv. Acest bit nu contează când e calculată valoarea absolută.


2. Construiește numărul binar fără semn.

Elimină primul bit (cel mai din stânga), acesta e rezervat pentru semn:


1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 = 111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000


3. Mapează digiții numărului binar fără semn cu puterile lui 2 corespunzătoare ordinului de mărime:

  • 262

    1
  • 261

    1
  • 260

    1
  • 259

    1
  • 258

    1
  • 257

    1
  • 256

    1
  • 255

    1
  • 254

    1
  • 253

    1
  • 252

    1
  • 251

    1
  • 250

    1
  • 249

    1
  • 248

    1
  • 247

    1
  • 246

    0
  • 245

    1
  • 244

    0
  • 243

    0
  • 242

    0
  • 241

    0
  • 240

    0
  • 239

    0
  • 238

    0
  • 237

    0
  • 236

    0
  • 235

    0
  • 234

    0
  • 233

    0
  • 232

    0
  • 231

    0
  • 230

    0
  • 229

    0
  • 228

    0
  • 227

    0
  • 226

    0
  • 225

    0
  • 224

    0
  • 223

    0
  • 222

    0
  • 221

    0
  • 220

    0
  • 219

    0
  • 218

    0
  • 217

    0
  • 216

    0
  • 215

    0
  • 214

    0
  • 213

    0
  • 212

    0
  • 211

    0
  • 210

    0
  • 29

    0
  • 28

    0
  • 27

    0
  • 26

    0
  • 25

    0
  • 24

    0
  • 23

    1
  • 22

    0
  • 21

    0
  • 20

    0

4. Înmulțește fiecare bit cu puterea lui 2 corespunzătoare, apoi însumează termenii.

111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000(2) =


(1 × 262 + 1 × 261 + 1 × 260 + 1 × 259 + 1 × 258 + 1 × 257 + 1 × 256 + 1 × 255 + 1 × 254 + 1 × 253 + 1 × 252 + 1 × 251 + 1 × 250 + 1 × 249 + 1 × 248 + 1 × 247 + 0 × 246 + 1 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =


(4 611 686 018 427 387 904 + 2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 0 + 35 184 372 088 832 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 8 + 0 + 0 + 0)(10) =


(4 611 686 018 427 387 904 + 2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 35 184 372 088 832 + 8)(10) =


9 223 266 483 738 509 320(10)

5. Dacă e nevoie, ajustează semnul numărului întreg în funcție de primul digit (cel mai din stânga) al numărului binar cu semn:

1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000(2) = -9 223 266 483 738 509 320(10)

Numărul 1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000(2) convertit din binar cu semn (din baza doi) și scris ca întreg în sistem zecimal (în baza zece):
1111 1111 1111 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000(2) = -9 223 266 483 738 509 320(10)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Cum convertești numere binare cu semn din sistem binar în cel zecimal

Pentru a înțelege cum să convertești un număr cu semn din sistem binar în cel zecimal (baza zece), cel mai ușor e să o facem printr-un exemplu - convertește numărul binar, 1001 1110, în baza zece:

  • Într-un binar cu semn, primul bit (cel mai din stânga) e rezervat pentru semn, 1 = negativ, 0 = pozitiv. Acest bit nu contează când e calculată valoarea absolută (fără semn). Primul bit al numărului nostru binar este 1, deci numărul este negativ.
  • Scriem mai jos numărul binar, în baza doi, iar deasupra fiecărui bit ce alcătuiește numărul, scriem puterea lui 2 (baza de numerație) corespunzătoare ordinului de mărime, începând cu zero, din partea dreaptă a numărului, mergând crescător cu câte o unitate spre stânga, ignorând primul bit (cel mai din stânga, cel ce reprezintă semnul):
  • puteri ale lui 2:   6 5 4 3 2 1 0
    digiții: 1 0 0 1 1 1 1 0
  • Construiește reprezentarea numărului negativ în baza 10, luând fiecare digit al numărului binar, înmulțindu-l cu puterea lui 2 corespunzătoare și însumând apoi toți termenii, ținând cont de semnul numărului:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Numărul binar cu semn, 1001 1110 = -30(10), întreg negativ (cu semn) în baza 10