Numărul binar fără semn (baza doi) 1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1101 convertit în întreg pozitiv în sistem zecimal (baza zece)

Cum convertești binar fără semn (baza 2):
1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1101(2)
în întreg pozitiv (fără semn) în sistem zecimal (în baza 10)

1. Mapează digiții numărului binar fără semn cu puterile lui 2 corespunzătoare ordinului de mărime:

    • 243

      1
    • 242

      1
    • 241

      0
    • 240

      0
    • 239

      0
    • 238

      0
    • 237

      0
    • 236

      0
    • 235

      0
    • 234

      1
    • 233

      0
    • 232

      0
    • 231

      1
    • 230

      0
    • 229

      0
    • 228

      0
    • 227

      0
    • 226

      0
    • 225

      0
    • 224

      0
    • 223

      0
    • 222

      0
    • 221

      0
    • 220

      0
    • 219

      1
    • 218

      0
    • 217

      0
    • 216

      0
    • 215

      0
    • 214

      0
    • 213

      0
    • 212

      1
    • 211

      1
    • 210

      1
    • 29

      1
    • 28

      1
    • 27

      1
    • 26

      1
    • 25

      1
    • 24

      1
    • 23

      1
    • 22

      1
    • 21

      0
    • 20

      1

2. Înmulțește fiecare bit cu puterea lui 2 corespunzătoare, apoi însumează termenii:

1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1101(2) =


(1 × 243 + 1 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 1 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 1 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =


(8 796 093 022 208 + 4 398 046 511 104 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 17 179 869 184 + 0 + 0 + 2 147 483 648 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 524 288 + 0 + 0 + 0 + 0 + 0 + 0 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 1)(10) =


(8 796 093 022 208 + 4 398 046 511 104 + 17 179 869 184 + 2 147 483 648 + 524 288 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 1)(10) =


13 213 467 418 621(10)

Concluzia:

Numărul 1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1101(2) convertit din binar fără semn (baza 2) în întreg pozitiv (fără semn) în sistem zecimal (în baza 10):


1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1101(2) = 13 213 467 418 621(10)

Spațiile folosite pentru a grupa digiți: pentru binar, câte 4; pentru zecimal, câte 3.


Mai multe operații de acest tip:

1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1100 = ?

1100 0000 0100 1000 0000 0000 1000 0001 1111 1111 1110 = ?


Convertește numere binare fără semn (baza doi) în întregi pozitivi în sistem zecimal (baza zece)

Cum convertești un număr binar fără semn (baza doi) într-un întreg pozitiv din baza zece:

1) Înmulțește fiecare digit al numărului binar cu puterea lui 2 corespunzătoare ordinului de mărime.

2) Adună toți termenii pentru a obține numărul întreg în baza zece.

Ultimele numere binare fără semn convertite în întregi pozitivi în sistem zecimal (baza zece)

Cum să convertești numere binare fără semn din sistem binar în cel zecimal? Pur și simplu convertește din baza doi în baza zece.

Pentru a înțelege cum să convertești un număr din baza doi în baza zece, cel mai ușor e să o facem printr-un exemplu - convertește numărul din baza doi, 101 0011(2), în baza zece:

  • Scriem mai jos numărul binar, în baza doi, iar deasupra fiecărui bit ce alcătuiește numărul, scriem puterea lui 2 (baza de numerație) corespunzătoare ordinului de mărime, începând cu zero, adică din partea dreaptă a numărului și mergând crescător cu câte o unitate spre stânga:
  • puteri ale lui 2: 6 5 4 3 2 1 0
    digiți: 1 0 1 0 0 1 1
  • Construiește reprezentarea numărului pozitiv în baza 10, luând fiecare digit al numărului binar, înmulțindu-l cu puterea lui 2 corespunzătoare și însumând apoi toți termenii:

    101 0011(2) =


    (1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


    (64 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


    (64 + 16 + 2 + 1)(10) =


    83(10)

  • Numărul binar fără semn (baza 2), 101 0011(2) = 83(10), întreg pozitiv (fără semn) în baza 10