Binar ↘ Float: Numărul din sistem binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754 0 - 0111 1000 - 101 1001 1111 1111 1111 0101 convertit (transformat) și scris ca număr zecimal în baza zece (ca float)

0 - 0111 1000 - 101 1001 1111 1111 1111 0101: Număr binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 convertit în sistem zecimal (baza 10)

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0


Următorii 8 biți conțin exponentul:
0111 1000


Ultimii 23 de biți conțin mantisa:
101 1001 1111 1111 1111 0101


2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).

Exponentul e întotdeauna un număr întreg pozitiv.

0111 1000(2) =


0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 64 + 32 + 16 + 8 + 0 + 0 + 0 =


64 + 32 + 16 + 8 =


120(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(8 - 1) - 1 = 127,

datorat reprezentării deplasate pe 8 biți.


Exponentul, ajustat = 120 - 127 = -7


4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).


101 1001 1111 1111 1111 0101(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 =


0,5 + 0 + 0,125 + 0,062 5 + 0 + 0 + 0,007 812 5 + 0,003 906 25 + 0,001 953 125 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 244 140 625 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0 + 0,000 000 476 837 158 203 125 + 0 + 0,000 000 119 209 289 550 781 25 =


0,5 + 0,125 + 0,062 5 + 0,007 812 5 + 0,003 906 25 + 0,001 953 125 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 244 140 625 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 476 837 158 203 125 + 0,000 000 119 209 289 550 781 25 =


0,703 123 688 697 814 941 406 25(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,703 123 688 697 814 941 406 25) × 2-7 =


1,703 123 688 697 814 941 406 25 × 2-7 =


0,013 305 653 817 951 679 229 736 328 125

0 - 0111 1000 - 101 1001 1111 1111 1111 0101 convertit din număr binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 - într-un număr în sistem zecimal, scris în baza 10 (float) = 0,013 305 653 817 951 679 229 736 328 125(10)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Ultimele numere în sistem binar în reprezentare pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 convertite (transformate) în numere zecimale scrise în baza zece (float)

Numărul 0 - 0000 0000 - 000 0011 1110 1111 1010 0001 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:29 EET (UTC +2)
Numărul 1 - 0000 0000 - 010 1000 1010 1010 0101 1101 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:29 EET (UTC +2)
Numărul 1 - 1000 1101 - 001 0000 0101 0000 1001 0110 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:28 EET (UTC +2)
Numărul 0 - 0111 1100 - 101 1001 0001 0001 0001 1001 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:28 EET (UTC +2)
Numărul 1 - 1111 0001 - 001 0010 0100 1000 1110 0100 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:28 EET (UTC +2)
Numărul 0 - 0101 0110 - 000 0110 1010 0110 0101 0100 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:27 EET (UTC +2)
Numărul 0 - 1000 0100 - 000 0100 1000 0101 0001 1001 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:27 EET (UTC +2)
Numărul 1 - 1000 0101 - 001 1000 0101 1000 0000 0100 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:27 EET (UTC +2)
Numărul 0 - 1010 1000 - 101 0000 0000 0000 0010 1101 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:27 EET (UTC +2)
Numărul 1 - 1001 0001 - 011 1110 0100 1011 0001 1011 convertit din sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) scris în baza 10 = ? 16 iul, 13:27 EET (UTC +2)
Toate numerele binare în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 convertite (transformate) în sistem zecimal (în baza zece, float)

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul.
    Ultimii 23 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți.
  • 4. Convertește mantisa din binar (baza 2) în zecimal (baza 10); aceasta reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă).
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul: 1000 0001
    Ultimii 23 de biți conțin mantisa: 100 0001 0000 0010 0000 0000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    1000 0001(2) =
    1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
    128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
    128 + 1 =
    129(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți:
    Exponent ajustat = 129 - 127 = 2
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    100 0001 0000 0010 0000 0000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0,007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
    0,5 + 0,007 812 5 + 0,000 061 035 156 25 =
    0,507 873 535 156 25(10)
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,507 873 535 156 25) × 22 =
    -1,507 873 535 156 25 × 22 =
    -6,031 494 140 625;
  • 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 convertit din binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) în sistem zecimal (în baza 10) = -6,031 494 140 625(10)