Numărul în sistem binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754 0 - 0111 1100 - 001 0010 1011 0110 0111 1111 convertit în zecimal în baza zece (float)

binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 0 - 0111 1100 - 001 0010 1011 0110 0111 1111 în sistem zecimal (baza 10) = ?

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 8 biți conțin exponentul:
0111 1100


Ultimii 23 de biți conțin mantisa:
001 0010 1011 0110 0111 1111

2. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

0111 1100(2) =


0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


0 + 64 + 32 + 16 + 8 + 4 + 0 + 0 =


64 + 32 + 16 + 8 + 4 =


124(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți:

Exponent ajustat = 124 - 127 = -3


4. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

001 0010 1011 0110 0111 1111(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 =


0 + 0 + 0,125 + 0 + 0 + 0,015 625 + 0 + 0,003 906 25 + 0 + 0,000 976 562 5 + 0,000 488 281 25 + 0 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0 + 0 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 =


0,125 + 0,015 625 + 0,003 906 25 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 =


0,146 194 338 798 522 949 218 75(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,146 194 338 798 522 949 218 75) × 2-3 =


1,146 194 338 798 522 949 218 75 × 2-3 =


0,143 274 292 349 815 368 652 343 75

0 - 0111 1100 - 001 0010 1011 0110 0111 1111 convertit din binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în sistem zecimal (baza zece) (float) =
0,143 274 292 349 815 368 652 343 75(10)

Mai multe operații de acest tip:

0 - 0111 1100 - 001 0010 1011 0110 0111 1110 = ?

0 - 0111 1100 - 001 0010 1011 0110 1000 0000 = ?


Convertește numere din binar pe 32 de biți, precizie simplă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (float)

Numerele în reprezentarea în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 8 biți), mantisă (23 biți)

Ultimele numere în sistem binar în reprezentare pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (float)

0 - 0111 1100 - 001 0010 1011 0110 0111 1111 = ? 02 mar, 22:01 EET (UTC +2)
0 - 1010 1111 - 010 0110 0100 0111 0100 1110 = ? 02 mar, 22:01 EET (UTC +2)
1 - 1000 1001 - 100 0100 1110 0110 0110 1000 = ? 02 mar, 22:01 EET (UTC +2)
1 - 1000 0001 - 110 0010 0000 0000 0000 0010 = ? 02 mar, 22:01 EET (UTC +2)
0 - 1000 1001 - 111 1010 0001 1111 1111 1110 = ? 02 mar, 22:01 EET (UTC +2)
0 - 1111 1110 - 111 1111 0000 0000 0000 0011 = ? 02 mar, 22:00 EET (UTC +2)
0 - 1000 1110 - 100 1011 1100 0000 0000 0101 = ? 02 mar, 22:00 EET (UTC +2)
0 - 1001 0001 - 001 0000 0000 0000 0000 0100 = ? 02 mar, 22:00 EET (UTC +2)
0 - 1000 0101 - 111 0001 0010 0011 1111 1010 = ? 02 mar, 22:00 EET (UTC +2)
0 - 1000 0100 - 000 0000 0000 0000 0000 0011 = ? 02 mar, 22:00 EET (UTC +2)
0 - 0110 1110 - 000 0000 0000 0000 0000 0000 = ? 02 mar, 22:00 EET (UTC +2)
1 - 1000 1001 - 011 0100 0000 0000 0000 0011 = ? 02 mar, 21:59 EET (UTC +2)
0 - 1000 0110 - 000 1111 1100 0110 0010 1011 = ? 02 mar, 21:59 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul.
    Ultimii 23 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți.
  • 4. Convertește mantisa din binar (baza 2) în zecimal (baza 10); aceasta reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă).
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul: 1000 0001
    Ultimii 23 de biți conțin mantisa: 100 0001 0000 0010 0000 0000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    1000 0001(2) =
    1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
    128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
    128 + 1 =
    129(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți:
    Exponent ajustat = 129 - 127 = 2
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    100 0001 0000 0010 0000 0000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0,007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
    0,5 + 0,007 812 5 + 0,000 061 035 156 25 =
    0,507 873 535 156 25(10)
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,507 873 535 156 25) × 22 =
    -1,507 873 535 156 25 × 22 =
    -6,031 494 140 625;
  • 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 convertit din binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) în sistem zecimal (în baza 10) = -6,031 494 140 625(10)