Care sunt pașii pentru a scrie
0 - 1001 1111 - 010 1010 1010 1010 1000 1100, binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 ca număr zecimal?
1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 8 biți conțin exponentul:
1001 1111
Ultimii 23 de biți conțin mantisa:
010 1010 1010 1010 1000 1100
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
1001 1111(2) =
1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
128 + 0 + 0 + 16 + 8 + 4 + 2 + 1 =
128 + 16 + 8 + 4 + 2 + 1 =
159(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(8 - 1) - 1 = 127,
datorat reprezentării deplasate pe 8 biți.
Exponentul, ajustat = 159 - 127 = 32
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
010 1010 1010 1010 1000 1100(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0 + 0,25 + 0 + 0,062 5 + 0 + 0,015 625 + 0 + 0,003 906 25 + 0 + 0,000 976 562 5 + 0 + 0,000 244 140 625 + 0 + 0,000 061 035 156 25 + 0 + 0,000 015 258 789 062 5 + 0 + 0 + 0 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0 + 0 =
0,25 + 0,062 5 + 0,015 625 + 0,003 906 25 + 0,000 976 562 5 + 0,000 244 140 625 + 0,000 061 035 156 25 + 0,000 015 258 789 062 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 =
0,333 329 677 581 787 109 375(10)
5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:
(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
(-1)0 × (1 + 0,333 329 677 581 787 109 375) × 232 =
1,333 329 677 581 787 109 375 × 232 = ...