Din binar pe 32 biți IEEE 754 în zecimal, float: Convertor, transformă 0 - 1011 0101 - 001 0110 1000 0111 1000 0110, număr scris în binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754, în număr tip float în sistem zecimal, în baza zece

0 - 1011 0101 - 001 0110 1000 0111 1000 0110: numărul binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 convertit în număr tip float in sistem zecimal, baza 10

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0


Următorii 8 biți conțin exponentul:
1011 0101


Ultimii 23 de biți conțin mantisa:
001 0110 1000 0111 1000 0110


1. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).

Exponentul e întotdeauna un număr întreg pozitiv.

1011 0101(2) =


1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =


128 + 0 + 32 + 16 + 0 + 4 + 0 + 1 =


128 + 32 + 16 + 4 + 1 =


181(10)

2. Ajustează exponentul.

Scade excesul de biți: 2(8 - 1) - 1 = 127,

datorat reprezentării deplasate pe 8 biți.


Exponentul, ajustat = 181 - 127 = 54


2. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).


001 0110 1000 0111 1000 0110(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 =


0 + 0 + 0,125 + 0 + 0,031 25 + 0,015 625 + 0 + 0,003 906 25 + 0 + 0 + 0 + 0 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0 + 0 + 0 + 0 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0 =


0,125 + 0,031 25 + 0,015 625 + 0,003 906 25 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 =


0,176 010 847 091 674 804 687 5(10)

3. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,176 010 847 091 674 804 687 5) × 254 =


1,176 010 847 091 674 804 687 5 × 254 = ...


= 21 185 128 050 982 912

0 - 1011 0101 - 001 0110 1000 0111 1000 0110 convertit din număr binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 - într-un număr în sistem zecimal, scris în baza 10 (float) = 21 185 128 050 982 912(10)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul.
    Ultimii 23 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți.
  • 4. Convertește mantisa din binar (baza 2) în zecimal (baza 10); aceasta reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă).
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul: 1000 0001
    Ultimii 23 de biți conțin mantisa: 100 0001 0000 0010 0000 0000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    1000 0001(2) =
    1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
    128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
    128 + 1 =
    129(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți:
    Exponent ajustat = 129 - 127 = 2
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    100 0001 0000 0010 0000 0000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0,007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
    0,5 + 0,007 812 5 + 0,000 061 035 156 25 =
    0,507 873 535 156 25(10)
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,507 873 535 156 25) × 22 =
    -1,507 873 535 156 25 × 22 =
    -6,031 494 140 625;
  • 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 convertit din binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) în sistem zecimal (în baza 10) = -6,031 494 140 625(10)