Numărul în sistem binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754 1 - 1111 1100 - 110 1010 0000 0000 0000 0000 convertit în zecimal în baza zece (float)

Cum convertești binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:
1 - 1111 1100 - 110 1010 0000 0000 0000 0000
în sistem zecimal (baza 10)

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 8 biți conțin exponentul:
1111 1100


Ultimii 23 de biți conțin mantisa:
110 1010 0000 0000 0000 0000

2. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

1111 1100(2) =


1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


128 + 64 + 32 + 16 + 8 + 4 + 0 + 0 =


128 + 64 + 32 + 16 + 8 + 4 =


252(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți:

Exponent ajustat = 252 - 127 = 125


4. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

110 1010 0000 0000 0000 0000(2) =

1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =


0,5 + 0,25 + 0 + 0,062 5 + 0 + 0,015 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0,5 + 0,25 + 0,062 5 + 0,015 625 =


0,828 125(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)1 × (1 + 0,828 125) × 2125 =


-1,828 125 × 2125 =


-77 759 837 753 417 578 564 872 713 026 400 157 696

Concluzia:

1 - 1111 1100 - 110 1010 0000 0000 0000 0000
convertit din
binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (float) =

-77 759 837 753 417 578 564 872 713 026 400 157 696(10)

Mai multe operații de acest tip:

1 - 1111 1100 - 110 1001 1111 1111 1111 1111 = ?

1 - 1111 1100 - 110 1010 0000 0000 0000 0001 = ?


Convertește numere din binar pe 32 de biți, precizie simplă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (float)

Numerele în reprezentarea în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 8 biți), mantisă (23 biți)

Ultimele numere în sistem binar în reprezentare pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (float)

1 - 1111 1100 - 110 1010 0000 0000 0000 0000 = ? 20 ian, 12:08 EET (UTC +2)
0 - 0101 1000 - 011 1111 0101 1111 1000 0100 = ? 20 ian, 12:08 EET (UTC +2)
0 - 1000 0000 - 011 0100 1101 1111 1000 1011 = ? 20 ian, 12:08 EET (UTC +2)
0 - 0000 0011 - 100 1111 1111 1111 1111 1111 = ? 20 ian, 12:07 EET (UTC +2)
1 - 1001 1000 - 100 1100 1100 1100 0000 0001 = ? 20 ian, 12:07 EET (UTC +2)
0 - 1000 1110 - 110 1000 0000 0000 0000 0001 = ? 20 ian, 12:06 EET (UTC +2)
1 - 1000 0010 - 100 1000 0000 0000 0000 0000 = ? 20 ian, 12:06 EET (UTC +2)
0 - 0111 1100 - 011 1000 0000 0000 0000 0000 = ? 20 ian, 12:05 EET (UTC +2)
0 - 0100 0001 - 000 0000 0000 0000 0000 0001 = ? 20 ian, 12:05 EET (UTC +2)
1 - 1000 0010 - 100 0011 1111 1111 1111 1101 = ? 20 ian, 12:04 EET (UTC +2)
0 - 1000 0000 - 001 1001 1111 1111 1111 1111 = ? 20 ian, 12:03 EET (UTC +2)
0 - 1000 0110 - 100 1011 1111 1111 1111 1111 = ? 20 ian, 12:02 EET (UTC +2)
1 - 0111 1111 - 110 0100 0000 0000 0000 0000 = ? 20 ian, 12:01 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul.
    Ultimii 23 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți.
  • 4. Convertește mantisa din binar (baza 2) în zecimal (baza 10); aceasta reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă).
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 8 biți conțin exponentul: 1000 0001
    Ultimii 23 de biți conțin mantisa: 100 0001 0000 0010 0000 0000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    1000 0001(2) =
    1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
    128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
    128 + 1 =
    129(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(8 - 1) - 1 = 127, datorat reprezentării deplasate pe 8 biți:
    Exponent ajustat = 129 - 127 = 2
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    100 0001 0000 0010 0000 0000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0,007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
    0,5 + 0,007 812 5 + 0,000 061 035 156 25 =
    0,507 873 535 156 25(10)
  • 5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,507 873 535 156 25) × 22 =
    -1,507 873 535 156 25 × 22 =
    -6,031 494 140 625;
  • 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 convertit din binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 în număr zecimal (float) în sistem zecimal (în baza 10) = -6,031 494 140 625(10)