Care sunt pașii pentru a scrie
1 - 1111 1110 - 000 0000 0000 0000 0000 0000, binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 ca număr zecimal?
1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
1
Următorii 8 biți conțin exponentul:
1111 1110
Ultimii 23 de biți conțin mantisa:
000 0000 0000 0000 0000 0000
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
1111 1110(2) =
1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =
128 + 64 + 32 + 16 + 8 + 4 + 2 =
254(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(8 - 1) - 1 = 127,
datorat reprezentării deplasate pe 8 biți.
Exponentul, ajustat = 254 - 127 = 127
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
000 0000 0000 0000 0000 0000(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0(10)
= -170 141 183 460 469 231 731 687 303 715 884 105 728
1 - 1111 1110 - 000 0000 0000 0000 0000 0000, binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754, scris ca număr în sistem zecimal, scris în baza 10 (float) = -170 141 183 460 469 231 731 687 303 715 884 105 728(10)
Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.