Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 000 0000 0000 - 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 000 0000 0000 - 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
în sistem zecimal (baza 10)

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
000 0000 0000


Ultimii 52 de biți conțin mantisa:
0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

2. Poziție rezervată.

Observăm că toți biții ce alcătuiesc exponentul sunt 0 și cel puțin un bit din componența mantisei e setat pe 1.

Aceasta e una din pozițiile rezervate valorilor speciale de tip: Denormalizat.

Numerele denormalizate sunt prea mici pentru a fi reprezentate exact și sunt aproximate cu zero. În funcție de bitul semnului, -0 și +0 sunt două valori distincte deși ele sunt egale (cu 0).

3. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

000 0000 0000(2) =


0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0(10)

4. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 0 - 1023 = -1023


5. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,001 953 125 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 244 140 625 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 059 604 644 775 390 625 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0,001 953 125 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 244 140 625 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 059 604 644 775 390 625 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0,003 906 249 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5(10)

6. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,003 906 249 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5) × 2-1023 =


1,003 906 249 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5 × 2-1023 =


0

Concluzia:

0 - 000 0000 0000 - 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =

0(10)

Mai multe operații de acest tip:

0 - 000 0000 0000 - 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ?

0 - 000 0000 0000 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ?


Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 000 0000 0000 - 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 0 20 oct, 17:13 EET (UTC +2)
1 - 100 0000 0001 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -5 20 oct, 17:11 EET (UTC +2)
1 - 011 0101 1010 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 032 073 176 521 106 347 753 686 437 605 817 782 545 782 362 561 260 584 375 543 249 905 924 783 691 845 564 304 045 979 042 712 133 377 790 451 049 804 687 5 20 oct, 17:08 EET (UTC +2)
1 - 100 0101 0010 - 1000 0010 1010 0101 0100 0011 1101 0101 0101 1101 0010 0101 0000 = -14 607 056 504 601 833 633 742 848 20 oct, 17:05 EET (UTC +2)
0 - 010 1011 0010 - 0101 0110 0100 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 076 414 260 195 375 970 567 020 172 707 290 968 013 650 489 064 279 328 220 336 187 279 015 344 710 720 561 684 149 291 427 279 018 107 680 215 978 147 475 697 275 559 691 233 989 892 825 067 775 029 705 119 286 311 387 874 322 204 018 897 223 145 668 243 521 760 271 342 235 4 20 oct, 17:01 EET (UTC +2)
0 - 100 0000 0111 - 1100 0100 1000 0101 0110 0000 0100 0001 1000 1001 0011 0111 0101 = 452,521 000 000 000 015 006 662 579 253 315 925 598 144 531 25 20 oct, 17:01 EET (UTC +2)
0 - 100 0001 1011 - 1000 1100 0011 1001 0101 1011 0101 1000 0010 0000 1111 1010 0010 = 415 471 029,508 051 037 788 391 113 281 25 20 oct, 16:59 EET (UTC +2)
1 - 011 1111 1100 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0,156 25 20 oct, 16:58 EET (UTC +2)
0 - 100 0001 1001 - 0001 1000 0110 0011 1101 1100 1111 1101 1001 1011 1101 1000 0010 = 73 502 579,962 636 977 434 158 325 195 312 5 20 oct, 16:56 EET (UTC +2)
0 - 100 0000 0101 - 1111 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 125 20 oct, 16:55 EET (UTC +2)
0 - 100 0000 0100 - 0110 0101 0111 1010 1111 1001 1111 1000 0000 0000 0000 0000 0000 = 44,685 047 090 053 558 349 609 375 20 oct, 16:55 EET (UTC +2)
1 - 011 1111 1110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0,75 20 oct, 16:55 EET (UTC +2)
0 - 000 0000 1100 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 068 2 20 oct, 16:55 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)