1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 11 biți conțin exponentul:
000 0000 0000
Ultimii 52 de biți conțin mantisa:
1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 0011
1. Poziție rezervată.
Observăm că toți biții ce alcătuiesc exponentul sunt 0 (clear) și cel puțin un bit din componența mantisei e setat pe 1 (set).
Aceasta e una din pozițiile rezervate valorilor speciale de tip: Denormalizat.
Numerele denormalizate sunt prea mici pentru a fi reprezentate exact și sunt aproximate cu zero.
În funcție de bitul semnului, -0 și +0 sunt două valori distincte deși ele sunt egale (cu 0).
1. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
000 0000 0000(2) =
0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0(10)
2. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 0 - 1023 = -1023
2. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 0011(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 1 × 2-33 + 1 × 2-34 + 0 × 2-35 + 0 × 2-36 + 1 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 1 × 2-41 + 1 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0,5 + 0,25 + 0 + 0 + 0,031 25 + 0,015 625 + 0 + 0 + 0,001 953 125 + 0,000 976 562 5 + 0 + 0 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0 + 0 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0 + 0 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0 + 0 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,5 + 0,25 + 0,031 25 + 0,015 625 + 0,001 953 125 + 0,000 976 562 5 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,800 000 000 000 001 376 676 550 535 194 110 125 303 268 432 617 187 5(10)