Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 000 0000 1010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 000 0000 1010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
în sistem zecimal (baza 10)

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
000 0000 1010


Ultimii 52 de biți conțin mantisa:
0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

000 0000 1010(2) =


0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 8 + 0 + 2 + 0 =


8 + 2 =


10(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 10 - 1023 = -1013


4. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0,25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0,25 =


0,25(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,25) × 2-1013 =


1,25 × 2-1013 =


0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 014 1

Concluzia:

0 - 000 0000 1010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =

0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 014 1(10)

Mai multe operații de acest tip:

0 - 000 0000 1010 - 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ?

0 - 000 0000 1010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = ?


Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 000 0000 1010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 014 1 23 oct, 07:57 EET (UTC +2)
1 - 000 1000 1001 - 1001 0010 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 23 oct, 07:57 EET (UTC +2)
0 - 100 0000 0010 - 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 = 15,000 000 000 000 024 868 995 751 603 506 505 489 349 365 234 375 23 oct, 07:54 EET (UTC +2)
0 - 100 0010 0011 - 0001 1011 0110 1101 1101 0000 0000 0000 0000 0000 0000 0000 0000 = 76 082 380 800 23 oct, 07:53 EET (UTC +2)
0 - 101 0000 0000 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 347 376 267 711 948 586 270 712 955 026 063 723 559 809 953 996 921 692 118 372 752 023 739 388 919 808 23 oct, 07:52 EET (UTC +2)
0 - 100 0000 0010 - 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 15,75 23 oct, 07:49 EET (UTC +2)
1 - 111 1111 0000 - 0110 0110 0110 0110 0110 1000 0000 0000 0000 0000 0000 0000 0000 = -7 680 574 219 508 726 259 227 901 058 510 261 464 433 158 753 491 208 113 749 384 543 482 420 655 924 016 308 128 962 040 482 928 817 160 091 841 837 607 341 966 938 930 643 753 291 093 963 961 806 353 390 309 039 146 029 361 575 900 439 229 861 922 116 084 809 208 469 776 785 263 709 953 946 808 183 412 533 615 309 125 428 114 189 208 721 260 752 416 437 817 187 883 623 026 534 148 209 161 407 561 728 23 oct, 07:48 EET (UTC +2)
0 - 100 0000 0100 - 0001 0010 0001 1011 1101 0111 1110 1100 0011 1011 0100 0111 1000 = 34,263 595 433 768 330 167 367 821 559 309 959 411 621 093 75 23 oct, 07:48 EET (UTC +2)
0 - 111 0000 0000 - 1101 0101 0111 0111 0011 0001 1000 1001 0001 1001 0100 1010 1110 = 5 694 170 602 308 670 586 253 002 843 014 881 042 163 616 432 265 293 010 341 443 655 519 308 519 472 443 636 110 813 121 447 059 953 573 432 584 339 655 504 412 582 980 729 665 331 624 417 708 758 106 566 732 737 385 617 741 863 158 953 291 291 062 704 222 890 587 555 117 271 807 491 285 120 832 476 545 024 23 oct, 07:47 EET (UTC +2)
0 - 100 0000 0011 - 0111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 23,5 23 oct, 07:46 EET (UTC +2)
0 - 101 1111 0000 - 0011 0010 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = 489 789 860 550 378 007 989 687 615 916 489 939 372 208 040 192 130 107 890 368 376 252 139 859 520 140 844 314 306 560 520 990 052 080 973 545 405 669 908 601 119 406 375 449 856 503 240 907 030 528 23 oct, 07:45 EET (UTC +2)
0 - 100 0001 0101 - 0001 1111 1110 0001 0010 1101 1001 1110 0001 0100 0111 0010 0001 = 4 716 619,404 374 868 609 011 173 248 291 015 625 23 oct, 07:42 EET (UTC +2)
0 - 010 0000 1010 - 1001 0010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 240 456 905 173 894 631 487 093 826 551 447 175 596 317 151 281 863 295 753 543 953 319 226 398 356 239 853 520 716 116 450 688 905 607 162 826 925 138 349 090 246 673 067 585 936 043 743 781 694 141 610 518 2 23 oct, 07:40 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)