Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 001 1111 0000 - 0101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 001 1111 0000 - 0101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000.

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
001 1111 0000


Ultimii 52 de biți conțin mantisa:
0101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):

001 1111 0000(2) =


0 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 256 + 128 + 64 + 32 + 16 + 0 + 0 + 0 + 0 =


256 + 128 + 64 + 32 + 16 =


496(10)

3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 496 - 1023 = -527

4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă), din binar (baza 2) în zecimal (baza 10):

0101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0,25 + 0 + 0,062 5 + 0 + 0 + 0,007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0,25 + 0,062 5 + 0,007 812 5 =


0,320 312 5(10)

Concluzia:

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,320 312 5) × 2-527 =


1,320 312 5 × 2-527 =


0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 005 169 829 303 824 757 614 548 536 093 797 251 025 733 207 100 555 336 789 814 468 173 649 423 305 630 668 483 289 614 862 614 390 297 163 631 797 400 238 861 147 763 843 758 287 786 536 602 630 9

0 - 001 1111 0000 - 0101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =


0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 005 169 829 303 824 757 614 548 536 093 797 251 025 733 207 100 555 336 789 814 468 173 649 423 305 630 668 483 289 614 862 614 390 297 163 631 797 400 238 861 147 763 843 758 287 786 536 602 630 9(10)

Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 001 1111 0000 - 0101 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 005 169 829 303 824 757 614 548 536 093 797 251 025 733 207 100 555 336 789 814 468 173 649 423 305 630 668 483 289 614 862 614 390 297 163 631 797 400 238 861 147 763 843 758 287 786 536 602 630 9 24 feb, 06:17 EET (UTC +2)
0 - 100 0000 1001 - 1110 1010 1011 0000 1111 1010 1010 1100 1101 1001 1110 1000 0100 = 1 962,765 300 000 000 024 738 255 888 223 648 071 289 062 5 24 feb, 06:14 EET (UTC +2)
0 - 000 0000 0000 - 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0 24 feb, 06:12 EET (UTC +2)
0 - 011 1111 1110 - 0100 1111 1111 1001 1101 1110 1000 1000 0001 1101 1111 0000 0000 = 0,656 203 226 199 949 085 639 673 285 186 290 740 966 796 875 24 feb, 06:11 EET (UTC +2)
0 - 100 0000 0000 - 0000 0000 0111 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 2,003 509 521 484 375 24 feb, 06:11 EET (UTC +2)
0 - 100 0000 1100 - 1010 1010 0110 1100 1000 1001 1000 1001 1110 1010 0010 0000 0000 = 13 645,567 157 582 379 877 567 291 259 765 625 24 feb, 06:05 EET (UTC +2)
0 - 011 1111 1011 - 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 = 0,099 999 999 999 999 991 673 327 315 311 325 946 822 762 489 318 847 656 25 24 feb, 06:03 EET (UTC +2)
0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0101 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 011 428 347 176 081 458 991 647 906 683 632 191 702 361 936 994 489 561 680 867 367 028 908 413 880 054 733 567 902 253 637 467 317 060 474 648 967 830 182 897 671 770 079 093 644 736 953 128 381 112 968 004 580 502 211 108 311 531 461 041 721 247 084 979 040 664 620 697 498 321 533 203 125 24 feb, 06:03 EET (UTC +2)
0 - 011 1111 1010 - 1000 0001 0101 1011 1110 1010 1110 0010 0110 0001 1000 1001 1000 = 0,047 040 899 999 999 996 605 737 351 274 001 412 093 639 373 779 296 875 24 feb, 06:01 EET (UTC +2)
0 - 010 0000 0000 - 0000 0000 0000 0000 0000 0110 0110 0110 0110 0110 0110 0110 0110 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 149 166 871 526 628 108 435 128 313 997 769 812 026 719 360 483 240 886 966 066 052 600 550 735 145 427 345 696 505 521 741 151 111 286 036 180 206 012 696 353 262 591 759 468 263 043 771 793 737 082 454 3 24 feb, 05:59 EET (UTC +2)
1 - 101 1011 1101 - 1111 1110 1000 0101 0110 0111 0100 0111 1001 0111 0000 1111 1000 = -362 369 638 928 857 091 587 484 448 489 516 819 037 992 298 600 877 325 178 998 343 775 462 302 048 597 770 978 152 469 040 860 624 650 600 191 540 971 602 085 704 638 979 375 104 24 feb, 05:56 EET (UTC +2)
1 - 110 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -26 815 615 859 885 194 199 148 049 996 411 692 254 958 731 641 184 786 755 447 122 887 443 528 060 147 093 953 603 748 596 333 806 855 380 063 716 372 972 101 707 507 765 623 893 139 892 867 298 012 168 192 24 feb, 05:52 EET (UTC +2)
0 - 001 1101 0000 - 0010 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 600 330 566 382 661 899 736 511 418 724 863 257 356 576 735 921 970 810 843 856 324 498 463 353 697 789 798 410 902 805 729 828 530 516 233 965 603 820 751 772 282 030 319 542 827 582 24 feb, 05:52 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)