Care sunt pașii pentru a scrie
0 - 011 1111 0000 - 0011 0111 0100 1010 1011 1100 1111 1100 0011 0010 1000 0001 0110, binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 ca număr zecimal?
1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 11 biți conțin exponentul:
011 1111 0000
Ultimii 52 de biți conțin mantisa:
0011 0111 0100 1010 1011 1100 1111 1100 0011 0010 1000 0001 0110
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
011 1111 0000(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 0 + 0 + 0 + 0 =
512 + 256 + 128 + 64 + 32 + 16 =
1.008(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 1.008 - 1023 = -15
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
0011 0111 0100 1010 1011 1100 1111 1100 0011 0010 1000 0001 0110(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0 + 0,125 + 0,062 5 + 0 + 0,015 625 + 0,007 812 5 + 0,003 906 25 + 0 + 0,000 976 562 5 + 0 + 0 + 0,000 122 070 312 5 + 0 + 0,000 030 517 578 125 + 0 + 0,000 007 629 394 531 25 + 0 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0 + 0 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0 + 0 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0,125 + 0,062 5 + 0,015 625 + 0,007 812 5 + 0,003 906 25 + 0,000 976 562 5 + 0,000 122 070 312 5 + 0,000 030 517 578 125 + 0,000 007 629 394 531 25 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0,215 984 164 783 099 341 633 487 711 078 487 336 635 589 599 609 375(10)