Care sunt pașii pentru a scrie
0 - 011 1111 1100 - 0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0110, binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 ca număr zecimal?
1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 11 biți conțin exponentul:
011 1111 1100
Ultimii 52 de biți conțin mantisa:
0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0110
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
011 1111 1100(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 0 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 =
1.020(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 1.020 - 1023 = -3
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0110(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 1 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 0 × 2-30 + 0 × 2-31 + 1 × 2-32 + 1 × 2-33 + 0 × 2-34 + 0 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 0 × 2-39 + 1 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0,25 + 0 + 0,062 5 + 0,031 25 + 0 + 0 + 0,003 906 25 + 0,001 953 125 + 0 + 0 + 0,000 244 140 625 + 0,000 122 070 312 5 + 0 + 0 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0 + 0 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0 + 0 + 0,000 000 059 604 644 775 390 625 + 0,000 000 029 802 322 387 695 312 5 + 0 + 0 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0 + 0 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0 + 0 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0,25 + 0,062 5 + 0,031 25 + 0,003 906 25 + 0,001 953 125 + 0,000 244 140 625 + 0,000 122 070 312 5 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 059 604 644 775 390 625 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0,350 000 000 000 002 753 353 101 070 388 220 250 606 536 865 234 375(10)