Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 100 0000 0111 - 1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0000 0111 - 1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001.

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
100 0000 0111


Ultimii 52 de biți conțin mantisa:
1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001

2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):

100 0000 0111(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =


1.024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 2 + 1 =


1.024 + 4 + 2 + 1 =


1.031(10)

3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 1.031 - 1023 = 8

4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă), din binar (baza 2) în zecimal (baza 10):

1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001(2) =

1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 1 × 2-25 + 0 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =


0,5 + 0 + 0 + 0 + 0 + 0,015 625 + 0,007 812 5 + 0 + 0 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 244 140 625 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0 + 0 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0 + 0,000 000 029 802 322 387 695 312 5 + 0 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0 + 0 + 0 + 0 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0 + 0 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0,5 + 0,015 625 + 0,007 812 5 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 244 140 625 + 0,000 015 258 789 062 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0,525 163 574 218 750 150 990 331 349 021 289 497 613 906 860 351 562 5(10)

Concluzia:

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,525 163 574 218 750 150 990 331 349 021 289 497 613 906 860 351 562 5) × 28 =


1,525 163 574 218 750 150 990 331 349 021 289 497 613 906 860 351 562 5 × 28 =


390,441 875 000 000 038 653 524 825 349 450 111 389 160 156 25

0 - 100 0000 0111 - 1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =


390,441 875 000 000 038 653 524 825 349 450 111 389 160 156 25(10)

Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 100 0000 0111 - 1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001 = 390,441 875 000 000 038 653 524 825 349 450 111 389 160 156 25 07 aug, 21:08 EET (UTC +2)
0 - 001 0000 0100 - 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 020 611 676 091 505 005 413 122 631 143 279 101 219 114 257 394 174 164 842 488 721 592 180 159 750 321 8 07 aug, 21:07 EET (UTC +2)
0 - 100 0001 1000 - 1010 0110 1011 1001 0011 1010 0001 0011 0100 1001 0111 1110 0001 = 55 407 220,150 680 311 024 188 995 361 328 125 07 aug, 21:05 EET (UTC +2)
0 - 100 0001 0101 - 1010 1001 1011 1101 0110 1000 1001 0001 1101 1110 0010 1000 0110 = 6 975 322,142 449 026 927 351 951 599 121 093 75 07 aug, 21:05 EET (UTC +2)
0 - 100 0000 0011 - 1011 1001 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 27,566 406 25 07 aug, 21:05 EET (UTC +2)
0 - 100 0010 1010 - 0010 0111 0100 0111 1101 1110 0101 0101 0101 0101 0100 1110 1000 = 10 145 768 843 946,453 125 07 aug, 21:03 EET (UTC +2)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 = 0 07 aug, 21:03 EET (UTC +2)
0 - 100 0000 0011 - 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 16,5 07 aug, 21:03 EET (UTC +2)
1 - 111 1101 1101 - 1001 1100 0011 0111 0001 1111 1110 0000 1110 0000 0000 0000 0000 = -16 849 223 110 114 000 901 164 837 182 818 450 731 643 845 963 304 766 357 485 406 935 245 259 996 991 155 367 221 545 477 732 397 105 271 021 794 877 732 678 148 158 097 509 935 079 081 270 838 430 391 291 622 250 107 871 289 712 362 939 755 662 163 875 872 721 800 737 462 864 542 058 609 557 489 041 699 513 986 956 610 045 133 062 314 002 231 583 458 820 416 709 954 448 274 574 418 309 545 984 07 aug, 21:01 EET (UTC +2)
0 - 011 1111 1111 - 0011 1110 1011 1000 0101 0001 1110 1011 1000 0101 0001 1110 1100 = 1,245 000 000 000 000 106 581 410 364 015 027 880 668 640 136 718 75 07 aug, 21:01 EET (UTC +2)
0 - 100 0000 0011 - 1001 0001 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 25,078 125 07 aug, 21:01 EET (UTC +2)
0 - 100 0000 0011 - 0010 0110 0110 0110 0110 0110 0000 0000 0000 0000 0000 0000 0000 = 18,399 999 618 530 273 437 5 07 aug, 21:01 EET (UTC +2)
0 - 100 0001 0111 - 1100 1101 0010 0100 0000 1000 0001 0110 1000 0100 0011 0011 1010 = 30 221 320,087 954 737 246 036 529 541 015 625 07 aug, 21:01 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)