Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 100 0001 1000 - 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0001 1000 - 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000.

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
100 0001 1000


Ultimii 52 de biți conțin mantisa:
0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000

2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):

100 0001 1000(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


1.024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 0 + 0 =


1.024 + 16 + 8 =


1.048(10)

3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 1.048 - 1023 = 25

4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă), din binar (baza 2) în zecimal (baza 10):

0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0,000 000 007 450 580 596 923 828 125 =


0,000 000 007 450 580 596 923 828 125(10)

Concluzia:

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,000 000 007 450 580 596 923 828 125) × 225 =


1,000 000 007 450 580 596 923 828 125 × 225 =


33 554 432,25

0 - 100 0001 1000 - 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =


33 554 432,25(10)

Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 100 0001 1000 - 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 = 33 554 432,25 07 dec, 12:10 EET (UTC +2)
1 - 100 0011 1100 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 0000 0000 = -3 459 934 436 076 814 336 07 dec, 12:10 EET (UTC +2)
0 - 100 0011 0010 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 4 503 599 627 370 495,5 07 dec, 12:09 EET (UTC +2)
0 - 111 1100 0000 - 1110 1001 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 37 246 799 523 551 510 156 965 869 453 658 709 230 167 805 531 164 512 410 428 973 532 145 681 580 553 808 748 559 375 941 499 724 269 573 278 433 496 753 588 967 786 451 230 408 798 168 744 724 395 452 780 586 611 853 611 527 974 922 516 409 193 529 489 713 125 751 375 956 338 799 137 584 969 609 877 140 448 159 014 257 853 187 663 285 705 801 415 396 728 409 674 457 110 208 839 680 07 dec, 12:08 EET (UTC +2)
1 - 100 0100 1010 - 0010 1111 0110 0000 1010 1111 0010 1110 1010 1111 1110 0010 1110 = -44 770 642 342 524 160 573 440 07 dec, 12:08 EET (UTC +2)
0 - 011 1111 1110 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 0,749 999 999 999 999 888 977 697 537 484 345 957 636 833 190 917 968 75 07 dec, 12:07 EET (UTC +2)
1 - 100 0000 0110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -192 07 dec, 12:06 EET (UTC +2)
1 - 100 0000 0001 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -6 07 dec, 12:05 EET (UTC +2)
0 - 011 1110 1000 - 1110 1100 0010 1000 1111 0101 1100 0010 1000 1111 0101 1100 0010 = 0,000 000 229 179 859 161 376 938 301 923 423 049 744 066 304 356 238 106 265 664 100 646 972 656 25 07 dec, 12:02 EET (UTC +2)
0 - 100 0001 0010 - 0100 1001 0001 1011 1101 1000 0100 0000 0000 0000 0000 0000 0000 = 674 014,757 812 5 07 dec, 12:01 EET (UTC +2)
0 - 011 1100 0000 - 1001 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 173 641 754 187 131 569 509 006 112 639 326 602 220 535 278 320 312 5 07 dec, 11:56 EET (UTC +2)
1 - 000 0000 0000 - 1111 1101 0101 0101 0101 1111 1111 1111 1111 1111 1111 1111 1111 = -0 07 dec, 11:56 EET (UTC +2)
1 - 110 0001 0111 - 1010 0001 0100 1010 1110 0100 0111 1110 0001 0011 1000 0000 0000 = -366 672 501 003 909 193 940 462 403 109 703 050 594 377 940 317 475 864 214 110 198 527 984 746 053 690 756 096 925 088 672 426 745 753 028 817 715 332 031 936 597 958 392 038 618 947 699 214 578 279 357 698 015 232 07 dec, 11:56 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)