Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 100 0001 1000 - 0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1111 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0001 1000 - 0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1111
în sistem zecimal (baza 10)

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
100 0001 1000


Ultimii 52 de biți conțin mantisa:
0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1111

2. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

100 0001 1000(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


1.024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 0 + 0 =


1.024 + 16 + 8 =


1.048(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 1.048 - 1023 = 25


4. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1111(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 1 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0,015 625 + 0 + 0 + 0 + 0,000 976 562 5 + 0,000 488 281 25 + 0 + 0,000 122 070 312 5 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0 + 0,000 000 119 209 289 550 781 25 + 0,000 000 059 604 644 775 390 625 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0,015 625 + 0,000 976 562 5 + 0,000 488 281 25 + 0,000 122 070 312 5 + 0,000 015 258 789 062 5 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 119 209 289 550 781 25 + 0,000 000 059 604 644 775 390 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0,017 230 705 975 044 946 498 542 230 983 730 405 569 076 538 085 937 5(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,017 230 705 975 044 946 498 542 230 983 730 405 569 076 538 085 937 5) × 225 =


1,017 230 705 975 044 946 498 542 230 983 730 405 569 076 538 085 937 5 × 225 =


34 132 598,551 951 639 354 228 973 388 671 875

Concluzia:

0 - 100 0001 1000 - 0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1111
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =

34 132 598,551 951 639 354 228 973 388 671 875(10)

Mai multe operații de acest tip:

0 - 100 0001 1000 - 0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1110 = ?

0 - 100 0001 1000 - 0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1010 0000 = ?


Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 100 0001 1000 - 0000 0100 0110 1001 0011 1011 0100 0110 1010 0110 0101 1001 1111 = 34 132 598,551 951 639 354 228 973 388 671 875 23 oct, 08:28 EET (UTC +2)
0 - 100 0000 0000 - 1111 0101 0110 1011 1010 0011 1111 1111 1111 1111 1111 1111 1111 = 3,917 347 431 182 860 884 035 790 149 937 383 830 547 332 763 671 875 23 oct, 08:26 EET (UTC +2)
0 - 100 0000 0110 - 0100 1010 0011 0101 1100 0010 1000 1111 0101 1100 0010 1001 0000 = 165,105 000 000 000 018 189 894 035 458 564 758 300 781 25 23 oct, 08:25 EET (UTC +2)
1 - 100 0000 0101 - 0110 1001 1010 0001 1001 1011 0110 1111 1110 1011 0001 0101 1100 = -90,407 819 508 288 810 084 195 574 745 535 850 524 902 343 75 23 oct, 08:22 EET (UTC +2)
1 - 110 1001 1010 - 1110 1110 0011 0111 1111 1001 1011 1100 1010 0101 0000 0100 0000 = -1 182 187 264 655 882 769 725 012 800 394 836 603 681 683 239 498 641 708 016 610 544 405 367 665 970 036 204 305 049 632 848 236 883 867 101 788 696 195 330 520 708 943 956 353 105 328 402 916 991 106 218 806 078 417 752 973 721 598 100 322 912 645 561 487 154 216 960 23 oct, 08:21 EET (UTC +2)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0100 0000 0001 0011 0100 0000 = 0 23 oct, 08:20 EET (UTC +2)
1 - 111 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = SNaN, Signalling Not a Number 23 oct, 08:18 EET (UTC +2)
0 - 011 1111 1101 - 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,468 75 23 oct, 08:18 EET (UTC +2)
1 - 100 1000 0010 - 1000 0101 1011 1100 1100 0101 1100 0111 0101 1100 0011 0101 1001 = -4 144 398 828 794 963 646 913 585 867 044 375 494 656 23 oct, 08:15 EET (UTC +2)
0 - 111 1111 1111 - 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = SNaN, Signalling Not a Number 23 oct, 08:14 EET (UTC +2)
0 - 111 1111 1111 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = SNaN, Signalling Not a Number 23 oct, 08:12 EET (UTC +2)
0 - 100 0000 1011 - 0110 1101 0110 0100 0100 0000 0000 0000 0000 0000 0000 0000 0001 = 5 846,265 625 000 000 909 494 701 772 928 237 915 039 062 5 23 oct, 08:11 EET (UTC +2)
0 - 100 0000 0111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 256 23 oct, 08:08 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)