1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 11 biți conțin exponentul:
100 0001 1001
Ultimii 52 de biți conțin mantisa:
0101 0101 1100 0111 1001 1101 0001 1101 0110 0010 0010 0001 1011
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
100 0001 1001(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
1.024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 0 + 1 =
1.024 + 16 + 8 + 1 =
1.049(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 1.049 - 1023 = 26
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
0101 0101 1100 0111 1001 1101 0001 1101 0110 0010 0010 0001 1011(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0,25 + 0 + 0,062 5 + 0 + 0,015 625 + 0 + 0,003 906 25 + 0,001 953 125 + 0,000 976 562 5 + 0 + 0 + 0 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0 + 0 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0 + 0,000 000 059 604 644 775 390 625 + 0 + 0 + 0 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0 + 0 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,25 + 0,062 5 + 0,015 625 + 0,003 906 25 + 0,001 953 125 + 0,000 976 562 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 059 604 644 775 390 625 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,335 077 113 794 006 065 106 145 797 471 981 495 618 820 190 429 687 5(10)