Care sunt pașii pentru a scrie
0 - 100 0001 1011 - 0111 1001 1010 1010 1100 1110 0000 0110 0111 0001 0010 0110 0001, binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 ca număr zecimal?
1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 11 biți conțin exponentul:
100 0001 1011
Ultimii 52 de biți conțin mantisa:
0111 1001 1010 1010 1100 1110 0000 0110 0111 0001 0010 0110 0001
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
100 0001 1011(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
1.024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 2 + 1 =
1.024 + 16 + 8 + 2 + 1 =
1.051(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 1.051 - 1023 = 28
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
0111 1001 1010 1010 1100 1110 0000 0110 0111 0001 0010 0110 0001(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0 + 0,25 + 0,125 + 0,062 5 + 0,031 25 + 0 + 0 + 0,003 906 25 + 0,001 953 125 + 0 + 0,000 488 281 25 + 0 + 0,000 122 070 312 5 + 0 + 0,000 030 517 578 125 + 0 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0 + 0 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0 + 0 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0 + 0 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,25 + 0,125 + 0,062 5 + 0,031 25 + 0,003 906 25 + 0,001 953 125 + 0,000 488 281 25 + 0,000 122 070 312 5 + 0,000 030 517 578 125 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,475 262 524 197 340 718 856 708 008 388 523 012 399 673 461 914 062 5(10)