1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
0
Următorii 11 biți conțin exponentul:
100 1000 0110
Ultimii 52 de biți conțin mantisa:
0111 1110 0100 1101 0011 1110 1010 0000 0010 0010 1010 0011 1010
1. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
100 1000 0110(2) =
1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
1.024 + 0 + 0 + 128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =
1.024 + 128 + 4 + 2 =
1.158(10)
2. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 1.158 - 1023 = 135
2. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
0111 1110 0100 1101 0011 1110 1010 0000 0010 0010 1010 0011 1010(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 1 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0,25 + 0,125 + 0,062 5 + 0,031 25 + 0,015 625 + 0,007 812 5 + 0 + 0 + 0,000 976 562 5 + 0 + 0 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0 + 0,000 015 258 789 062 5 + 0 + 0 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0 + 0,000 000 029 802 322 387 695 312 5 + 0 + 0,000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0,25 + 0,125 + 0,062 5 + 0,031 25 + 0,015 625 + 0,007 812 5 + 0,000 976 562 5 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 015 258 789 062 5 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0,493 366 159 530 195 691 473 863 917 053 677 141 666 412 353 515 625(10)