Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1010 convertit în zecimal în baza zece (double)

binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1010 în sistem zecimal (baza 10) = ?

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
111 1111 1101


Ultimii 52 de biți conțin mantisa:
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1010

2. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

111 1111 1101(2) =


1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =


1.024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 1 =


1.024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 1 =


2.045(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 2.045 - 1023 = 1022


4. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1010(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0 + 0,25 + 0 + 0,062 5 + 0 + 0,015 625 + 0 + 0,003 906 25 + 0 + 0,000 976 562 5 + 0 + 0,000 244 140 625 + 0 + 0,000 061 035 156 25 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0,000 000 953 674 316 406 25 + 0 + 0,000 000 238 418 579 101 562 5 + 0 + 0,000 000 059 604 644 775 390 625 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0,000 000 003 725 290 298 461 914 062 5 + 0 + 0,000 000 000 931 322 574 615 478 515 625 + 0 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0,25 + 0,062 5 + 0,015 625 + 0,003 906 25 + 0,000 976 562 5 + 0,000 244 140 625 + 0,000 061 035 156 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 953 674 316 406 25 + 0,000 000 238 418 579 101 562 5 + 0,000 000 059 604 644 775 390 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0,333 333 333 333 334 369 541 489 650 146 104 395 389 556 884 765 625(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)0 × (1 + 0,333 333 333 333 334 369 541 489 650 146 104 395 389 556 884 765 625) × 21022 =


1,333 333 333 333 334 369 541 489 650 146 104 395 389 556 884 765 625 × 21022 =


59 923 104 495 410 576 827 250 728 836 429 763 102 629 203 490 976 760 665 006 103 879 920 193 661 269 311 245 846 969 383 297 380 322 725 899 454 790 156 537 210 022 954 096 361 233 521 168 872 730 343 458 706 597 924 454 354 969 225 566 442 059 081 150 115 697 861 352 498 036 184 857 707 600 139 047 471 543 548 323 000 584 819 794 406 434 015 892 441 246 136 909 080 467 543 756 643 340 817 901 639 696 384

0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1010 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în sistem zecimal (baza zece) (double) =
59 923 104 495 410 576 827 250 728 836 429 763 102 629 203 490 976 760 665 006 103 879 920 193 661 269 311 245 846 969 383 297 380 322 725 899 454 790 156 537 210 022 954 096 361 233 521 168 872 730 343 458 706 597 924 454 354 969 225 566 442 059 081 150 115 697 861 352 498 036 184 857 707 600 139 047 471 543 548 323 000 584 819 794 406 434 015 892 441 246 136 909 080 467 543 756 643 340 817 901 639 696 384(10)

Mai multe operații de acest tip:

0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1001 = ?

0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1011 = ?


Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

0 - 111 1111 1101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1010 = ? 02 mar, 21:46 EET (UTC +2)
0 - 101 1111 0000 - 0011 0010 0110 1110 1101 0000 0000 0000 0000 0000 0010 0000 0001 = ? 02 mar, 21:46 EET (UTC +2)
0 - 100 0000 0000 - 1001 0001 1110 1011 1000 0101 0001 1110 1011 1000 0101 0001 1100 = ? 02 mar, 21:45 EET (UTC +2)
0 - 000 0000 0000 - 0001 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? 02 mar, 21:44 EET (UTC +2)
0 - 000 0000 0001 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000 = ? 02 mar, 21:44 EET (UTC +2)
0 - 100 0000 0011 - 0011 1000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? 02 mar, 21:43 EET (UTC +2)
0 - 000 0000 0000 - 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1000 0000 = ? 02 mar, 21:43 EET (UTC +2)
1 - 101 1101 0111 - 1000 0010 0000 0011 0100 0000 0000 0010 0001 0000 0000 0000 0000 = ? 02 mar, 21:43 EET (UTC +2)
1 - 111 1111 1110 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? 02 mar, 21:43 EET (UTC +2)
0 - 000 0000 0001 - 1111 1111 1111 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? 02 mar, 21:43 EET (UTC +2)
0 - 000 0000 0001 - 0111 0000 0000 0001 0111 0000 0000 0001 0111 0000 0000 0001 0111 = ? 02 mar, 21:42 EET (UTC +2)
0 - 000 0000 0000 - 0011 1111 1111 0010 1000 1110 0011 1010 1101 1111 1001 0001 1010 = ? 02 mar, 21:41 EET (UTC +2)
1 - 000 0000 0000 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100 = ? 02 mar, 21:38 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)