Care sunt pașii pentru a scrie
1 - 100 0000 0101 - 0001 0111 0100 0111 1010 1110 0001 0100 0111 1010 1100 1100 0001, binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 ca număr zecimal?
1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
1
Următorii 11 biți conțin exponentul:
100 0000 0101
Ultimii 52 de biți conțin mantisa:
0001 0111 0100 0111 1010 1110 0001 0100 0111 1010 1100 1100 0001
2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).
Exponentul e întotdeauna un număr întreg pozitiv.
100 0000 0101(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
1.024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1 =
1.024 + 4 + 1 =
1.029(10)
3. Ajustează exponentul.
Scade excesul de biți: 2(11 - 1) - 1 = 1023,
datorat reprezentării deplasate pe 11 biți.
Exponentul, ajustat = 1.029 - 1023 = 6
4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).
Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).
0001 0111 0100 0111 1010 1110 0001 0100 0111 1010 1100 1100 0001(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 1 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0 + 0 + 0 + 0,062 5 + 0 + 0,015 625 + 0,007 812 5 + 0,003 906 25 + 0 + 0,000 976 562 5 + 0 + 0 + 0 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0 + 0,000 001 907 348 632 812 5 + 0 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0 + 0 + 0 + 0 + 0,000 000 003 725 290 298 461 914 062 5 + 0 + 0,000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,062 5 + 0,015 625 + 0,007 812 5 + 0,003 906 25 + 0,000 976 562 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 001 907 348 632 812 5 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0,090 937 499 999 924 620 297 520 050 371 531 397 104 263 305 664 062 5(10)