Numărul în sistem binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754 1 - 100 1000 1100 - 0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 convertit în zecimal în baza zece (double)

Cum convertești binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
1 - 100 1000 1100 - 0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000
în sistem zecimal (baza 10)

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.


Următorii 11 biți conțin exponentul:
100 1000 1100


Ultimii 52 de biți conțin mantisa:
0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convertește exponentul din binar (baza 2) în zecimal (baza 10):

Exponentul e întotdeauna un număr întreg pozitiv.

100 1000 1100(2) =


1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


1.024 + 0 + 0 + 128 + 0 + 0 + 0 + 8 + 4 + 0 + 0 =


1.024 + 128 + 8 + 4 =


1.164(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023, datorat reprezentării deplasate pe 11 biți:

Exponent ajustat = 1.164 - 1023 = 141


4. Convertește mantisa din binar (baza 2) în zecimal (baza 10):

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă)

0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0 + 0,031 25 + 0,015 625 + 0 + 0 + 0 + 0,000 976 562 5 + 0 + 0 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0,031 25 + 0,015 625 + 0,000 976 562 5 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 030 517 578 125 =


0,048 065 185 546 875(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie dublă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)1 × (1 + 0,048 065 185 546 875) × 2141 =


-1,048 065 185 546 875 × 2141 =


-2 921 579 331 791 447 412 680 668 535 757 303 921 508 352

Concluzia:

1 - 100 1000 1100 - 0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000
convertit din
binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
în
sistem zecimal (baza zece) (double) =

-2 921 579 331 791 447 412 680 668 535 757 303 921 508 352(10)

Mai multe operații de acest tip:

1 - 100 1000 1100 - 0000 1100 0100 1101 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ?

1 - 100 1000 1100 - 0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0001 = ?


Convertește numere din binar pe 64 de biți, precizie dublă în virgulă mobilă în standard IEEE 754 în numere zecimale în baza zece (double)

Numerele în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 sunt alcătuite din trei elemente de bază: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertite în numere zecimale în baza zece (double)

1 - 100 1000 1100 - 0000 1100 0100 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -2 921 579 331 791 447 412 680 668 535 757 303 921 508 352 26 sep, 18:30 EET (UTC +2)
0 - 100 0000 1000 - 1000 1010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 789,5 26 sep, 18:25 EET (UTC +2)
0 - 000 0000 0011 - 0111 1001 1000 0000 0000 0000 0000 0101 1110 1110 1110 0000 0000 = 0 26 sep, 18:23 EET (UTC +2)
0 - 100 0000 1001 - 0000 1010 0011 0110 0101 0001 0010 0010 0011 0001 1000 0111 0011 = 1 064,848 702 000 014 554 869 267 158 210 277 557 373 046 875 26 sep, 18:23 EET (UTC +2)
0 - 100 0000 0011 - 0110 1101 1011 0110 1101 1011 0110 1101 1011 0110 1101 1011 0110 = 22,857 142 857 142 854 097 673 989 599 570 631 980 895 996 093 75 26 sep, 18:09 EET (UTC +2)
1 - 011 1111 0110 - 0110 0100 0111 1010 1110 0001 0100 0111 1010 1110 0001 0100 0000 = -0,002 719 726 562 499 996 669 330 926 124 530 378 729 104 995 727 539 062 5 26 sep, 18:00 EET (UTC +2)
1 - 101 0011 0001 - 1010 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -213 888 777 515 121 039 058 186 797 282 984 706 910 404 181 334 923 306 316 794 747 182 210 036 475 150 354 149 256 724 480 26 sep, 17:56 EET (UTC +2)
1 - 100 0001 1000 - 1000 0000 0011 1100 0000 1011 0011 1000 0001 0000 0000 0000 0000 = -50 362 390,437 988 281 25 26 sep, 17:55 EET (UTC +2)
1 - 100 0001 1000 - 1000 0000 0011 1100 0000 1011 0011 1000 0001 0000 0000 0000 0000 = -50 362 390,437 988 281 25 26 sep, 17:55 EET (UTC +2)
1 - 100 1000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -680 564 733 841 876 926 926 749 214 863 536 422 912 26 sep, 17:50 EET (UTC +2)
0 - 100 0000 0111 - 0000 1100 0011 1010 1110 0001 0100 0111 1010 1110 0000 0000 0000 = 268,229 999 999 981 373 548 507 690 429 687 5 26 sep, 17:45 EET (UTC +2)
0 - 011 1111 0011 - 0001 0000 0001 0110 1110 0101 0011 0011 0001 0011 1001 0010 1101 = 0,000 259 484 705 741 014 007 058 381 496 406 695 987 388 957 291 841 506 958 007 812 5 26 sep, 17:45 EET (UTC +2)
0 - 010 0000 0111 - 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 025 656 692 115 328 711 196 920 920 685 192 492 400 575 062 079 025 399 716 294 023 066 229 597 644 641 206 968 980 441 622 977 471 643 563 599 915 200 076 188 999 739 784 647 575 041 152 072 407 013 796 771 3 26 sep, 17:43 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 * 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 * 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)