Din binar pe 64 biți IEEE 754 în zecimal, double: Convertor, transformă 1 - 110 0000 0100 - 1100 0000 1000 1011 1111 1111 1111 1111 1111 1111 1111 1111 1010, număr scris în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, în număr tip double în sistem zecimal, în baza zece

1 - 110 0000 0100 - 1100 0000 1000 1011 1111 1111 1111 1111 1111 1111 1111 1111 1010: numărul binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertit în număr tip double in sistem zecimal, baza 10

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
1


Următorii 11 biți conțin exponentul:
110 0000 0100


Ultimii 52 de biți conțin mantisa:
1100 0000 1000 1011 1111 1111 1111 1111 1111 1111 1111 1111 1010


2. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).

Exponentul e întotdeauna un număr întreg pozitiv.

110 0000 0100(2) =


1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


1.024 + 512 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 0 =


1.024 + 512 + 4 =


1.540(10)

3. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023,

datorat reprezentării deplasate pe 11 biți.


Exponentul, ajustat = 1.540 - 1023 = 517


4. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).


1100 0000 1000 1011 1111 1111 1111 1111 1111 1111 1111 1111 1010(2) =

1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0,5 + 0,25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,001 953 125 + 0 + 0 + 0 + 0,000 122 070 312 5 + 0 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 059 604 644 775 390 625 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0,5 + 0,25 + 0,001 953 125 + 0,000 122 070 312 5 + 0,000 030 517 578 125 + 0,000 015 258 789 062 5 + 0,000 007 629 394 531 25 + 0,000 003 814 697 265 625 + 0,000 001 907 348 632 812 5 + 0,000 000 953 674 316 406 25 + 0,000 000 476 837 158 203 125 + 0,000 000 238 418 579 101 562 5 + 0,000 000 119 209 289 550 781 25 + 0,000 000 059 604 644 775 390 625 + 0,000 000 029 802 322 387 695 312 5 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 007 450 580 596 923 828 125 + 0,000 000 003 725 290 298 461 914 062 5 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 232 830 643 653 869 628 906 25 + 0,000 000 000 116 415 321 826 934 814 453 125 + 0,000 000 000 058 207 660 913 467 407 226 562 5 + 0,000 000 000 029 103 830 456 733 703 613 281 25 + 0,000 000 000 014 551 915 228 366 851 806 640 625 + 0,000 000 000 007 275 957 614 183 425 903 320 312 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 001 818 989 403 545 856 475 830 078 125 + 0,000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0,000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0,000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0,000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0,000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0,752 136 230 468 748 667 732 370 449 812 151 491 641 998 291 015 625(10)

5. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)1 × (1 + 0,752 136 230 468 748 667 732 370 449 812 151 491 641 998 291 015 625) × 2517 =


-1,752 136 230 468 748 667 732 370 449 812 151 491 641 998 291 015 625 × 2517 =


-751 753 793 446 995 785 690 517 467 771 920 962 415 644 260 746 884 126 490 692 194 382 568 919 854 211 617 547 755 646 727 442 207 851 563 637 403 490 544 586 101 406 410 179 011 201 571 388 337 384 587 264

1 - 110 0000 0100 - 1100 0000 1000 1011 1111 1111 1111 1111 1111 1111 1111 1111 1010 convertit din număr binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 - într-un număr în sistem zecimal, scris în baza 10 (double) = -751 753 793 446 995 785 690 517 467 771 920 962 415 644 260 746 884 126 490 692 194 382 568 919 854 211 617 547 755 646 727 442 207 851 563 637 403 490 544 586 101 406 410 179 011 201 571 388 337 384 587 264(10)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)