Din binar pe 64 biți IEEE 754 în zecimal, double: Convertor, transformă 1 - 111 0111 0111 - 1101 1001 0000 1100 0000 0000 0000 0000 0000 0000 0000 0101 0110, număr scris în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, în număr tip double în sistem zecimal, în baza zece

1 - 111 0111 0111 - 1101 1001 0000 1100 0000 0000 0000 0000 0000 0000 0000 0101 0110: numărul binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 convertit în număr tip double in sistem zecimal, baza 10

1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:

Primul bit (cel mai din stânga) indică semnul,
1 = negativ, 0 = pozitiv.
1


Următorii 11 biți conțin exponentul:
111 0111 0111


Ultimii 52 de biți conțin mantisa:
1101 1001 0000 1100 0000 0000 0000 0000 0000 0000 0000 0101 0110


1. Convertește exponentul din binar (din baza 2) în zecimal (în baza 10).

Exponentul e întotdeauna un număr întreg pozitiv.

111 0111 0111(2) =


1 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =


1.024 + 512 + 256 + 0 + 64 + 32 + 16 + 0 + 4 + 2 + 1 =


1.024 + 512 + 256 + 64 + 32 + 16 + 4 + 2 + 1 =


1.911(10)

2. Ajustează exponentul.

Scade excesul de biți: 2(11 - 1) - 1 = 1023,

datorat reprezentării deplasate pe 11 biți.


Exponentul, ajustat = 1.911 - 1023 = 888


2. Convertește mantisa din binar (din baza 2) în zecimal (în baza 10).

Mantisa reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată de aceasta prin virgulă).


1101 1001 0000 1100 0000 0000 0000 0000 0000 0000 0000 0101 0110(2) =

1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 1 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0,5 + 0,25 + 0 + 0,062 5 + 0,031 25 + 0 + 0 + 0,003 906 25 + 0 + 0 + 0 + 0 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0,5 + 0,25 + 0,062 5 + 0,031 25 + 0,003 906 25 + 0,000 122 070 312 5 + 0,000 061 035 156 25 + 0,000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0,000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0,000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0,847 839 355 468 769 095 836 023 552 692 495 286 464 691 162 109 375(10)

3. Pune toate numerele împreună, pentru a calcula valoarea numărului zecimal real în precizie simplă:

(-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =


(-1)1 × (1 + 0,847 839 355 468 769 095 836 023 552 692 495 286 464 691 162 109 375) × 2888 =


-1,847 839 355 468 769 095 836 023 552 692 495 286 464 691 162 109 375 × 2888 = ...


= -3 813 294 632 466 418 890 668 771 255 642 844 034 997 445 852 170 619 421 511 464 608 109 573 340 544 183 767 005 077 611 685 777 553 008 603 871 583 113 749 627 697 334 966 518 599 645 227 855 892 933 165 223 890 478 001 170 607 175 311 153 998 128 164 564 630 999 519 996 998 635 675 943 383 480 851 875 634 211 748 572 993 881 000 390 081 883 349 712 896

1 - 111 0111 0111 - 1101 1001 0000 1100 0000 0000 0000 0000 0000 0000 0000 0101 0110 convertit din număr binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 - într-un număr în sistem zecimal, scris în baza 10 (double) = -3 813 294 632 466 418 890 668 771 255 642 844 034 997 445 852 170 619 421 511 464 608 109 573 340 544 183 767 005 077 611 685 777 553 008 603 871 583 113 749 627 697 334 966 518 599 645 227 855 892 933 165 223 890 478 001 170 607 175 311 153 998 128 164 564 630 999 519 996 998 635 675 943 383 480 851 875 634 211 748 572 993 881 000 390 081 883 349 712 896(10)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Cum să convertești numere din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în numere zecimale (baza 10)

Urmează pașii de mai jos pentru a converti un număr din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți, în zecimal în baza zece:

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul.
    Ultimii 52 de biți conțin mantisa.
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10).
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți.
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10).
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie simplă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat)

Exemplu: convertește numărul 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 din sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți în număr zecimal (baza 10):

  • 1. Identifică elementele ce alcătuiesc reprezentarea numărului binar:
    Primul bit (cel mai din stânga) indică semnul, 1 = negativ, 0 = pozitiv.
    Următorii 11 biți conțin exponentul: 100 0011 1101
    Ultimii 52 de biți conțin mantisa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convertește exponentul, care întotdeauna reprezintă un număr întreg pozitiv, din binar (baza 2) în zecimal (baza 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1.024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1.024 + 32 + 16 + 8 + 4 + 1 =
    1.085(10)
  • 3. Ajustează exponentul, scade excesul de biți, 2(11 - 1) - 1 = 1.023, datorat reprezentării deplasate pe 11 biți:
    Exponent ajustat = 1.085 - 1.023 = 62
  • 4. Convertește mantisa, care reprezintă partea fracționară a numărului (ceea ce urmează după partea întreagă a numărului, separată prin virgulă), din binar (baza 2) în zecimal (baza 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0,5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 488 281 25 + 0 + 0 + 0 + 0 + 0,000 015 258 789 062 5 + 0 + 0,000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 014 901 161 193 847 656 25 + 0 + 0 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0,5 + 0,000 488 281 25 + 0,000 015 258 789 062 5 + 0,000 003 814 697 265 625 + 0,000 000 014 901 161 193 847 656 25 + 0,000 000 001 862 645 149 230 957 031 25 + 0,000 000 000 931 322 574 615 478 515 625 + 0,000 000 000 465 661 287 307 739 257 812 5 + 0,000 000 000 003 637 978 807 091 712 951 660 156 25 + 0,000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0,000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Pune toate numerele împreună în ecuație, pentru a calcula valoarea numărului zecimal în precizie dublă:
    (-1)Semn × (1 + Mantisă) × 2(Exponent ajustat) =
    (-1)1 × (1 + 0,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1,500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 convertit din binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 în număr zecimal (double) în sistem zecimal (în baza 10) = -6 919 868 872 153 800 704(10)