Din întreg în binar cu semn: numărul 11 101 110 095 transformat și scris din baza zece în binar cu semn. Conversia din sistem zecimal

Numărul întreg 11 101 110 095(10) scris ca număr binar cu semn

1. Împarte numărul în mod repetat la 2:

Ținem minte fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 11 101 110 095 : 2 = 5 550 555 047 + 1;
  • 5 550 555 047 : 2 = 2 775 277 523 + 1;
  • 2 775 277 523 : 2 = 1 387 638 761 + 1;
  • 1 387 638 761 : 2 = 693 819 380 + 1;
  • 693 819 380 : 2 = 346 909 690 + 0;
  • 346 909 690 : 2 = 173 454 845 + 0;
  • 173 454 845 : 2 = 86 727 422 + 1;
  • 86 727 422 : 2 = 43 363 711 + 0;
  • 43 363 711 : 2 = 21 681 855 + 1;
  • 21 681 855 : 2 = 10 840 927 + 1;
  • 10 840 927 : 2 = 5 420 463 + 1;
  • 5 420 463 : 2 = 2 710 231 + 1;
  • 2 710 231 : 2 = 1 355 115 + 1;
  • 1 355 115 : 2 = 677 557 + 1;
  • 677 557 : 2 = 338 778 + 1;
  • 338 778 : 2 = 169 389 + 0;
  • 169 389 : 2 = 84 694 + 1;
  • 84 694 : 2 = 42 347 + 0;
  • 42 347 : 2 = 21 173 + 1;
  • 21 173 : 2 = 10 586 + 1;
  • 10 586 : 2 = 5 293 + 0;
  • 5 293 : 2 = 2 646 + 1;
  • 2 646 : 2 = 1 323 + 0;
  • 1 323 : 2 = 661 + 1;
  • 661 : 2 = 330 + 1;
  • 330 : 2 = 165 + 0;
  • 165 : 2 = 82 + 1;
  • 82 : 2 = 41 + 0;
  • 41 : 2 = 20 + 1;
  • 20 : 2 = 10 + 0;
  • 10 : 2 = 5 + 0;
  • 5 : 2 = 2 + 1;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2:

Luăm fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


11 101 110 095(10) = 10 1001 0101 1010 1101 0111 1111 0100 1111(2)


3. Determinăm lungimea în biți a numărului binar cu semn:

Lungimea actuală a numărului în baza 2, în biți: 34.


Lungimea în biți a unui număr binar cu semn trebuie să fie egală cu o putere a lui 2:

21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...


Primul bit (cel mai din stânga) e rezervat pentru semn:

0 = număr întreg pozitiv, 1 = număr întreg negativ


Cel mai mic număr care este:


1) o putere a lui 2

2) și e mai mare decât lungimea actuală, 34,

3) astfel încât primul bit (cel mai din stânga) să fie zero
(avem de a face la acest moment cu un număr pozitiv)


=== este: 64.


4. Determină numărul binar pozitiv reprezentat în limbaj calculator, pe 64 biți (8 Octeți):

Dacă e nevoie, completează cu 0 în fața numărului în baza 2, până la lungimea cerută, 64:


Numărul 11 101 110 095(10), întreg cu semn,
convertit din sistem zecimal (din baza 10)
și scris ca binar cu semn (în baza 2):

11 101 110 095(10) = 0000 0000 0000 0000 0000 0000 0000 0010 1001 0101 1010 1101 0111 1111 0100 1111

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Cum să convertești întregi cu semn din baza zece (sistem zecimal) în cod binar

Urmează pașii de mai jos pentru a converti un număr întreg cu semn din baza zece în sistem binar cu semn:

  • 1. Într-un număr binar cu semn, primul bit (cel mai din stânga) e rezervat pentru semn: 0 = dacă numărul întreg este pozitiv, 1 = dacă numărul întreg este negativ. Dacă numărul de convertit e negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Împarte reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar în mod repetat la 2, ținând minte fiecare rest al împărțirilor. Atunci când obținem un cât care este egal cu ZERO => STOP.
  • 3. Construiește reprezentarea numărului pozitiv în baza 2, luând fiecare rest al împărțirilor precedente începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stanga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Numerele binare reprezentate în limbaj calculator trebuie să aibă 4, 8, 16, 32, 64, ... de biți lungime (o putere a lui 2) - dacă e nevoie, se completează cu '0' în fața numărului în baza 2 (la stânga lui) obținut mai sus, până la lungimea cerută, astfel, primul bit (cel mai din stânga) va fi întotdeauna '0', reprezentând în mod corect un număr pozitiv.
  • 5. Pentru a obține reprezentarea numărului întreg negativ se modifică primul bit (cel mai din stânga), din '0' în '1'.

Exemplu: convertește numărul negativ -63 din sistem zecimal (baza zece) în binar cu semn:

  • 1. Se începe cu versiunea pozitivă a numărului: |-63| = 63;
  • 2. Împarte 63 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât egal cu zero:
    • împărțire = cât + rest
    • 63 : 2 = 31 + 1
    • 31 : 2 = 15 + 1
    • 15 : 2 = 7 + 1
    • 7 : 2 = 3 + 1
    • 3 : 2 = 1 + 1
    • 1 : 2 = 0 + 1
  • 3. Construiește reprezentarea numărului pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
    63(10) = 11 1111(2)
  • 4. Numărul în baza 2 are o lungime de 6 biți, iar numărul binar pozitiv reprezentat în limbaj calculator va avea o lungime, în acest caz, de 8 biți (cea mai mică putere a lui 2 mai mare decât 6) - se completează cu '0' în fața numărului în baza 2, până la lungimea cerută:
    63(10) = 0011 1111(2)
  • 5. Pentru a obține reprezentarea numărului întreg negativ se modifică primul bit (cel mai din stânga), din '0' în '1':
    -63(10) = 1011 1111
  • Numărul -6310, întreg cu semn, convertit din sistem zecimal (baza 10) în binar cu semn = 1011 1111