Cu semn: Întreg ↗ Binar: 4 999 999 919 Convertește numărul întreg în cod binar. Scrie și transformă întregul din sistem zecimal (din baza zece) în sistem binar cu semn (scris în baza doi)

Numărul întreg cu semn 4 999 999 919(10)
convertit și scris ca binar cu semn (baza 2) = ?

1. Împarte numărul în mod repetat la 2:

Ținem minte fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 4 999 999 919 : 2 = 2 499 999 959 + 1;
  • 2 499 999 959 : 2 = 1 249 999 979 + 1;
  • 1 249 999 979 : 2 = 624 999 989 + 1;
  • 624 999 989 : 2 = 312 499 994 + 1;
  • 312 499 994 : 2 = 156 249 997 + 0;
  • 156 249 997 : 2 = 78 124 998 + 1;
  • 78 124 998 : 2 = 39 062 499 + 0;
  • 39 062 499 : 2 = 19 531 249 + 1;
  • 19 531 249 : 2 = 9 765 624 + 1;
  • 9 765 624 : 2 = 4 882 812 + 0;
  • 4 882 812 : 2 = 2 441 406 + 0;
  • 2 441 406 : 2 = 1 220 703 + 0;
  • 1 220 703 : 2 = 610 351 + 1;
  • 610 351 : 2 = 305 175 + 1;
  • 305 175 : 2 = 152 587 + 1;
  • 152 587 : 2 = 76 293 + 1;
  • 76 293 : 2 = 38 146 + 1;
  • 38 146 : 2 = 19 073 + 0;
  • 19 073 : 2 = 9 536 + 1;
  • 9 536 : 2 = 4 768 + 0;
  • 4 768 : 2 = 2 384 + 0;
  • 2 384 : 2 = 1 192 + 0;
  • 1 192 : 2 = 596 + 0;
  • 596 : 2 = 298 + 0;
  • 298 : 2 = 149 + 0;
  • 149 : 2 = 74 + 1;
  • 74 : 2 = 37 + 0;
  • 37 : 2 = 18 + 1;
  • 18 : 2 = 9 + 0;
  • 9 : 2 = 4 + 1;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2:

Luăm fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


4 999 999 919(10) = 1 0010 1010 0000 0101 1111 0001 1010 1111(2)


3. Determinăm lungimea în biți a numărului binar cu semn:

Lungimea actuală a numărului în baza 2, în biți: 33.


Lungimea în biți a unui număr binar cu semn trebuie să fie egală cu o putere a lui 2:

21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...


Primul bit (cel mai din stânga) e rezervat pentru semn:

0 = număr întreg pozitiv, 1 = număr întreg negativ


Cel mai mic număr care este:


1) o putere a lui 2

2) și e mai mare decât lungimea actuală, 33,

3) astfel încât primul bit (cel mai din stânga) să fie zero
(avem de a face la acest moment cu un număr pozitiv)


=== este: 64.


4. Determină numărul binar pozitiv reprezentat în limbaj calculator, pe 64 biți (8 Octeți):

Dacă e nevoie, completează cu 0 în fața numărului în baza 2, până la lungimea cerută, 64:


Numărul 4 999 999 919(10), întreg cu semn,
convertit din sistem zecimal (din baza 10)
și scris ca binar cu semn (în baza 2):

4 999 999 919(10) = 0000 0000 0000 0000 0000 0000 0000 0001 0010 1010 0000 0101 1111 0001 1010 1111

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Ultimele numere întregi convertite (transformate) din sistem zecimal (scrise din baza zece) în sistem binar cu semn

Convertește (transformă) numărul întreg 123.413.241.234.051 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg -23.000 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg 97.146 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg 73 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg 4.884.848.484.848.503 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg 2.604.738.945 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg 977 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:54 EET (UTC +2)
Convertește (transformă) numărul întreg 10.551.225 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:53 EET (UTC +2)
Convertește (transformă) numărul întreg -44.498 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:53 EET (UTC +2)
Convertește (transformă) numărul întreg 23.042.060 din sistem zecimal (din baza zece) în sistem binar cu semn, scris în baza doi 16 iul, 11:53 EET (UTC +2)
Toate numerele întregi convertite din sistem zecimal (scrise în baza zece) în sistem binar cu semn

Cum să convertești întregi cu semn din baza zece (sistem zecimal) în cod binar

Urmează pașii de mai jos pentru a converti un număr întreg cu semn din baza zece în sistem binar cu semn:

  • 1. Într-un număr binar cu semn, primul bit (cel mai din stânga) e rezervat pentru semn: 0 = dacă numărul întreg este pozitiv, 1 = dacă numărul întreg este negativ. Dacă numărul de convertit e negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Împarte reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar în mod repetat la 2, ținând minte fiecare rest al împărțirilor. Atunci când obținem un cât care este egal cu ZERO => STOP.
  • 3. Construiește reprezentarea numărului pozitiv în baza 2, luând fiecare rest al împărțirilor precedente începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stanga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Numerele binare reprezentate în limbaj calculator trebuie să aibă 4, 8, 16, 32, 64, ... de biți lungime (o putere a lui 2) - dacă e nevoie, se completează cu '0' în fața numărului în baza 2 (la stânga lui) obținut mai sus, până la lungimea cerută, astfel, primul bit (cel mai din stânga) va fi întotdeauna '0', reprezentând în mod corect un număr pozitiv.
  • 5. Pentru a obține reprezentarea numărului întreg negativ se modifică primul bit (cel mai din stânga), din '0' în '1'.

Exemplu: convertește numărul negativ -63 din sistem zecimal (baza zece) în binar cu semn:

  • 1. Se începe cu versiunea pozitivă a numărului: |-63| = 63;
  • 2. Împarte 63 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât egal cu zero:
    • împărțire = cât + rest
    • 63 : 2 = 31 + 1
    • 31 : 2 = 15 + 1
    • 15 : 2 = 7 + 1
    • 7 : 2 = 3 + 1
    • 3 : 2 = 1 + 1
    • 1 : 2 = 0 + 1
  • 3. Construiește reprezentarea numărului pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
    63(10) = 11 1111(2)
  • 4. Numărul în baza 2 are o lungime de 6 biți, iar numărul binar pozitiv reprezentat în limbaj calculator va avea o lungime, în acest caz, de 8 biți (cea mai mică putere a lui 2 mai mare decât 6) - se completează cu '0' în fața numărului în baza 2, până la lungimea cerută:
    63(10) = 0011 1111(2)
  • 5. Pentru a obține reprezentarea numărului întreg negativ se modifică primul bit (cel mai din stânga), din '0' în '1':
    -63(10) = 1011 1111
  • Numărul -6310, întreg cu semn, convertit din sistem zecimal (baza 10) în binar cu semn = 1011 1111