Din întreg în binar cu semn: numărul 741 254 301 transformat și scris din baza zece în binar cu semn. Conversia din sistem zecimal

Numărul întreg 741 254 301(10) scris ca număr binar cu semn

1. Împarte numărul în mod repetat la 2:

Ținem minte fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 741 254 301 : 2 = 370 627 150 + 1;
  • 370 627 150 : 2 = 185 313 575 + 0;
  • 185 313 575 : 2 = 92 656 787 + 1;
  • 92 656 787 : 2 = 46 328 393 + 1;
  • 46 328 393 : 2 = 23 164 196 + 1;
  • 23 164 196 : 2 = 11 582 098 + 0;
  • 11 582 098 : 2 = 5 791 049 + 0;
  • 5 791 049 : 2 = 2 895 524 + 1;
  • 2 895 524 : 2 = 1 447 762 + 0;
  • 1 447 762 : 2 = 723 881 + 0;
  • 723 881 : 2 = 361 940 + 1;
  • 361 940 : 2 = 180 970 + 0;
  • 180 970 : 2 = 90 485 + 0;
  • 90 485 : 2 = 45 242 + 1;
  • 45 242 : 2 = 22 621 + 0;
  • 22 621 : 2 = 11 310 + 1;
  • 11 310 : 2 = 5 655 + 0;
  • 5 655 : 2 = 2 827 + 1;
  • 2 827 : 2 = 1 413 + 1;
  • 1 413 : 2 = 706 + 1;
  • 706 : 2 = 353 + 0;
  • 353 : 2 = 176 + 1;
  • 176 : 2 = 88 + 0;
  • 88 : 2 = 44 + 0;
  • 44 : 2 = 22 + 0;
  • 22 : 2 = 11 + 0;
  • 11 : 2 = 5 + 1;
  • 5 : 2 = 2 + 1;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2:

Luăm fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


741 254 301(10) = 10 1100 0010 1110 1010 0100 1001 1101(2)


3. Determinăm lungimea în biți a numărului binar cu semn:

Lungimea actuală a numărului în baza 2, în biți: 30.


Lungimea în biți a unui număr binar cu semn trebuie să fie egală cu o putere a lui 2:

21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...


Primul bit (cel mai din stânga) e rezervat pentru semn:

0 = număr întreg pozitiv, 1 = număr întreg negativ


Cel mai mic număr care este:


1) o putere a lui 2

2) și e mai mare decât lungimea actuală, 30,

3) astfel încât primul bit (cel mai din stânga) să fie zero
(avem de a face la acest moment cu un număr pozitiv)


=== este: 32.


4. Determină numărul binar pozitiv reprezentat în limbaj calculator, pe 32 biți (4 Octeți):

Dacă e nevoie, completează cu 0 în fața numărului în baza 2, până la lungimea cerută, 32:


Numărul 741 254 301(10), întreg cu semn,
convertit din sistem zecimal (din baza 10)
și scris ca binar cu semn (în baza 2):

741 254 301(10) = 0010 1100 0010 1110 1010 0100 1001 1101

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.

Cum să convertești întregi cu semn din baza zece (sistem zecimal) în cod binar

Urmează pașii de mai jos pentru a converti un număr întreg cu semn din baza zece în sistem binar cu semn:

  • 1. Într-un număr binar cu semn, primul bit (cel mai din stânga) e rezervat pentru semn: 0 = dacă numărul întreg este pozitiv, 1 = dacă numărul întreg este negativ. Dacă numărul de convertit e negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Împarte reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar în mod repetat la 2, ținând minte fiecare rest al împărțirilor. Atunci când obținem un cât care este egal cu ZERO => STOP.
  • 3. Construiește reprezentarea numărului pozitiv în baza 2, luând fiecare rest al împărțirilor precedente începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stanga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Numerele binare reprezentate în limbaj calculator trebuie să aibă 4, 8, 16, 32, 64, ... de biți lungime (o putere a lui 2) - dacă e nevoie, se completează cu '0' în fața numărului în baza 2 (la stânga lui) obținut mai sus, până la lungimea cerută, astfel, primul bit (cel mai din stânga) va fi întotdeauna '0', reprezentând în mod corect un număr pozitiv.
  • 5. Pentru a obține reprezentarea numărului întreg negativ se modifică primul bit (cel mai din stânga), din '0' în '1'.

Exemplu: convertește numărul negativ -63 din sistem zecimal (baza zece) în binar cu semn:

  • 1. Se începe cu versiunea pozitivă a numărului: |-63| = 63;
  • 2. Împarte 63 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât egal cu zero:
    • împărțire = cât + rest
    • 63 : 2 = 31 + 1
    • 31 : 2 = 15 + 1
    • 15 : 2 = 7 + 1
    • 7 : 2 = 3 + 1
    • 3 : 2 = 1 + 1
    • 1 : 2 = 0 + 1
  • 3. Construiește reprezentarea numărului pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
    63(10) = 11 1111(2)
  • 4. Numărul în baza 2 are o lungime de 6 biți, iar numărul binar pozitiv reprezentat în limbaj calculator va avea o lungime, în acest caz, de 8 biți (cea mai mică putere a lui 2 mai mare decât 6) - se completează cu '0' în fața numărului în baza 2, până la lungimea cerută:
    63(10) = 0011 1111(2)
  • 5. Pentru a obține reprezentarea numărului întreg negativ se modifică primul bit (cel mai din stânga), din '0' în '1':
    -63(10) = 1011 1111
  • Numărul -6310, întreg cu semn, convertit din sistem zecimal (baza 10) în binar cu semn = 1011 1111