Din zecimal în binar pe 32 biți IEEE 754: Transformă numărul 0,300 000 011 920 928 954 63 în binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754, din sistem zecimal (baza zece)

Numărul 0,300 000 011 920 928 954 63(10) convertit și scris în binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

1. Întâi convertește în binar (în baza 2) partea întreagă: 0.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 0 : 2 = 0 + 0;

2. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

0(10) =


0(2)


3. Convertește în binar (baza 2) partea fracționară: 0,300 000 011 920 928 954 63.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,300 000 011 920 928 954 63 × 2 = 0 + 0,600 000 023 841 857 909 26;
  • 2) 0,600 000 023 841 857 909 26 × 2 = 1 + 0,200 000 047 683 715 818 52;
  • 3) 0,200 000 047 683 715 818 52 × 2 = 0 + 0,400 000 095 367 431 637 04;
  • 4) 0,400 000 095 367 431 637 04 × 2 = 0 + 0,800 000 190 734 863 274 08;
  • 5) 0,800 000 190 734 863 274 08 × 2 = 1 + 0,600 000 381 469 726 548 16;
  • 6) 0,600 000 381 469 726 548 16 × 2 = 1 + 0,200 000 762 939 453 096 32;
  • 7) 0,200 000 762 939 453 096 32 × 2 = 0 + 0,400 001 525 878 906 192 64;
  • 8) 0,400 001 525 878 906 192 64 × 2 = 0 + 0,800 003 051 757 812 385 28;
  • 9) 0,800 003 051 757 812 385 28 × 2 = 1 + 0,600 006 103 515 624 770 56;
  • 10) 0,600 006 103 515 624 770 56 × 2 = 1 + 0,200 012 207 031 249 541 12;
  • 11) 0,200 012 207 031 249 541 12 × 2 = 0 + 0,400 024 414 062 499 082 24;
  • 12) 0,400 024 414 062 499 082 24 × 2 = 0 + 0,800 048 828 124 998 164 48;
  • 13) 0,800 048 828 124 998 164 48 × 2 = 1 + 0,600 097 656 249 996 328 96;
  • 14) 0,600 097 656 249 996 328 96 × 2 = 1 + 0,200 195 312 499 992 657 92;
  • 15) 0,200 195 312 499 992 657 92 × 2 = 0 + 0,400 390 624 999 985 315 84;
  • 16) 0,400 390 624 999 985 315 84 × 2 = 0 + 0,800 781 249 999 970 631 68;
  • 17) 0,800 781 249 999 970 631 68 × 2 = 1 + 0,601 562 499 999 941 263 36;
  • 18) 0,601 562 499 999 941 263 36 × 2 = 1 + 0,203 124 999 999 882 526 72;
  • 19) 0,203 124 999 999 882 526 72 × 2 = 0 + 0,406 249 999 999 765 053 44;
  • 20) 0,406 249 999 999 765 053 44 × 2 = 0 + 0,812 499 999 999 530 106 88;
  • 21) 0,812 499 999 999 530 106 88 × 2 = 1 + 0,624 999 999 999 060 213 76;
  • 22) 0,624 999 999 999 060 213 76 × 2 = 1 + 0,249 999 999 998 120 427 52;
  • 23) 0,249 999 999 998 120 427 52 × 2 = 0 + 0,499 999 999 996 240 855 04;
  • 24) 0,499 999 999 996 240 855 04 × 2 = 0 + 0,999 999 999 992 481 710 08;
  • 25) 0,999 999 999 992 481 710 08 × 2 = 1 + 0,999 999 999 984 963 420 16;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (Pierdem din precizie - numărul convertit pe care îl vom obține în final va fi doar o foarte bună aproximare a celui inițial).


4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,300 000 011 920 928 954 63(10) =


0,0100 1100 1100 1100 1100 1100 1(2)

5. Numărul pozitiv înainte de normalizare:

0,300 000 011 920 928 954 63(10) =


0,0100 1100 1100 1100 1100 1100 1(2)

6. Normalizează reprezentarea binară a numărului.

Mută virgula cu 2 poziții la dreapta, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


0,300 000 011 920 928 954 63(10) =


0,0100 1100 1100 1100 1100 1100 1(2) =


0,0100 1100 1100 1100 1100 1100 1(2) × 20 =


1,0011 0011 0011 0011 0011 001(2) × 2-2


7. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): -2


Mantisă (nenormalizată):
1,0011 0011 0011 0011 0011 001


8. Ajustează exponentul.

Folosește reprezentarea deplasată pe 8 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(8-1) - 1 =


-2 + 2(8-1) - 1 =


(-2 + 127)(10) =


125(10)


9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 8 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 125 : 2 = 62 + 1;
  • 62 : 2 = 31 + 0;
  • 31 : 2 = 15 + 1;
  • 15 : 2 = 7 + 1;
  • 7 : 2 = 3 + 1;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

10. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


125(10) =


0111 1101(2)


11. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 23 biți, doar dacă e necesar (nu e cazul aici).


Mantisă (normalizată) =


1. 001 1001 1001 1001 1001 1001 =


001 1001 1001 1001 1001 1001


12. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (8 biți) =
0111 1101


Mantisă (23 biți) =
001 1001 1001 1001 1001 1001


Numărul zecimal în baza zece 0,300 000 011 920 928 954 63 convertit și scris în binar în representarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

0 - 0111 1101 - 001 1001 1001 1001 1001 1001

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Dacă numărul de convertit este negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Se convertește întâi partea întreagă; împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor de mai sus, începând din partea de sus a listei construite (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții la stânga (sau, dacă e cazul, la dreapta) astfel încât partea întreagă a acestuia să mai conțină un singur bit, diferit de '0'.
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 23 biți, fie renunțând la biții în exces, din dreapta (pierzând precizie...) fie adaugând tot la dreapta biți setați pe '0'.
  • 9. Semnul (ocupă 1 bit) este egal fie cu 1, dacă este un număr negativ, fie cu 0, dacă e un număr pozitiv.

Exemplu: convertește numărul negativ -25,347 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Se începe cu versiunea pozitivă a numărului:

    |-25,347| = 25,347;

  • 2. Convertește întâi partea întreagă, 25. Împarte în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 25 : 2 = 12 + 1;
    • 12 : 2 = 6 + 0;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    25(10) = 1 1001(2)

  • 4. Convertește apoi partea fracționară 0,347. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,347 × 2 = 0 + 0,694;
    • 2) 0,694 × 2 = 1 + 0,388;
    • 3) 0,388 × 2 = 0 + 0,776;
    • 4) 0,776 × 2 = 1 + 0,552;
    • 5) 0,552 × 2 = 1 + 0,104;
    • 6) 0,104 × 2 = 0 + 0,208
    • 7) 0,208 × 2 = 0 + 0,416;
    • 8) 0,416 × 2 = 0 + 0,832;
    • 9) 0,832 × 2 = 1 + 0,664;
    • 10) 0,664 × 2 = 1 + 0,328;
    • 11) 0,328 × 2 = 0 + 0,656;
    • 12) 0,656 × 2 = 1 + 0,312;
    • 13) 0,312 × 2 = 0 + 0,624;
    • 14) 0,624 × 2 = 1 + 0,248;
    • 15) 0,248 × 2 = 0 + 0,496;
    • 16) 0,496 × 2 = 0 + 0,992;
    • 17) 0,992 × 2 = 1 + 0,984;
    • 18) 0,984 × 2 = 1 + 0,968;
    • 19) 0,968 × 2 = 1 + 0,936;
    • 20) 0,936 × 2 = 1 + 0,872;
    • 21) 0,872 × 2 = 1 + 0,744;
    • 22) 0,744 × 2 = 1 + 0,488;
    • 23) 0,488 × 2 = 0 + 0,976;
    • 24) 0,976 × 2 = 1 + 0,952;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 23) și a fost găsită prin calcule măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,347(10) = 0,0101 1000 1101 0100 1111 1101(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    25,347(10) = 1 1001,0101 1000 1101 0100 1111 1101(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    25,347(10) =
    1 1001,0101 1000 1101 0100 1111 1101(2) =
    1 1001,0101 1000 1101 0100 1111 1101(2) × 20 =
    1,1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Până în acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar (baza 2) pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus, ținând minte toate resturile, ce vor alcătui numărul în binar:

    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea la 23 biți, prin renunțarea la biții în exces, cei din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101

    Mantisă (normalizată): 100 1010 1100 0110 1010 0111

  • Concluzia:

    Semn (1 bit) = 1 (un număr negativ)

    Exponent (8 biți) = 1000 0011

    Mantisă (23 biți) = 100 1010 1100 0110 1010 0111

  • Numărul -25,347 convertit din sistem zecimal (baza 10) în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 este:
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111