Din zecimal în binar pe 32 biți IEEE 754: Transformă numărul 101 011 110 100 094 în binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754, din sistem zecimal (baza zece)

Numărul 101 011 110 100 094(10) convertit și scris în binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

1. Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 101 011 110 100 094 : 2 = 50 505 555 050 047 + 0;
  • 50 505 555 050 047 : 2 = 25 252 777 525 023 + 1;
  • 25 252 777 525 023 : 2 = 12 626 388 762 511 + 1;
  • 12 626 388 762 511 : 2 = 6 313 194 381 255 + 1;
  • 6 313 194 381 255 : 2 = 3 156 597 190 627 + 1;
  • 3 156 597 190 627 : 2 = 1 578 298 595 313 + 1;
  • 1 578 298 595 313 : 2 = 789 149 297 656 + 1;
  • 789 149 297 656 : 2 = 394 574 648 828 + 0;
  • 394 574 648 828 : 2 = 197 287 324 414 + 0;
  • 197 287 324 414 : 2 = 98 643 662 207 + 0;
  • 98 643 662 207 : 2 = 49 321 831 103 + 1;
  • 49 321 831 103 : 2 = 24 660 915 551 + 1;
  • 24 660 915 551 : 2 = 12 330 457 775 + 1;
  • 12 330 457 775 : 2 = 6 165 228 887 + 1;
  • 6 165 228 887 : 2 = 3 082 614 443 + 1;
  • 3 082 614 443 : 2 = 1 541 307 221 + 1;
  • 1 541 307 221 : 2 = 770 653 610 + 1;
  • 770 653 610 : 2 = 385 326 805 + 0;
  • 385 326 805 : 2 = 192 663 402 + 1;
  • 192 663 402 : 2 = 96 331 701 + 0;
  • 96 331 701 : 2 = 48 165 850 + 1;
  • 48 165 850 : 2 = 24 082 925 + 0;
  • 24 082 925 : 2 = 12 041 462 + 1;
  • 12 041 462 : 2 = 6 020 731 + 0;
  • 6 020 731 : 2 = 3 010 365 + 1;
  • 3 010 365 : 2 = 1 505 182 + 1;
  • 1 505 182 : 2 = 752 591 + 0;
  • 752 591 : 2 = 376 295 + 1;
  • 376 295 : 2 = 188 147 + 1;
  • 188 147 : 2 = 94 073 + 1;
  • 94 073 : 2 = 47 036 + 1;
  • 47 036 : 2 = 23 518 + 0;
  • 23 518 : 2 = 11 759 + 0;
  • 11 759 : 2 = 5 879 + 1;
  • 5 879 : 2 = 2 939 + 1;
  • 2 939 : 2 = 1 469 + 1;
  • 1 469 : 2 = 734 + 1;
  • 734 : 2 = 367 + 0;
  • 367 : 2 = 183 + 1;
  • 183 : 2 = 91 + 1;
  • 91 : 2 = 45 + 1;
  • 45 : 2 = 22 + 1;
  • 22 : 2 = 11 + 0;
  • 11 : 2 = 5 + 1;
  • 5 : 2 = 2 + 1;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

101 011 110 100 094(10) =


101 1011 1101 1110 0111 1011 0101 0101 1111 1100 0111 1110(2)


3. Normalizează reprezentarea binară a numărului.

Mută virgula cu 46 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


101 011 110 100 094(10) =


101 1011 1101 1110 0111 1011 0101 0101 1111 1100 0111 1110(2) =


101 1011 1101 1110 0111 1011 0101 0101 1111 1100 0111 1110(2) × 20 =


1,0110 1111 0111 1001 1110 1101 0101 0111 1111 0001 1111 10(2) × 246


4. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 46


Mantisă (nenormalizată):
1,0110 1111 0111 1001 1110 1101 0101 0111 1111 0001 1111 10


5. Ajustează exponentul.

Folosește reprezentarea deplasată pe 8 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(8-1) - 1 =


46 + 2(8-1) - 1 =


(46 + 127)(10) =


173(10)


6. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 8 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 173 : 2 = 86 + 1;
  • 86 : 2 = 43 + 0;
  • 43 : 2 = 21 + 1;
  • 21 : 2 = 10 + 1;
  • 10 : 2 = 5 + 0;
  • 5 : 2 = 2 + 1;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

7. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


173(10) =


1010 1101(2)


8. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 23 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 011 0111 1011 1100 1111 0110 101 0101 1111 1100 0111 1110 =


011 0111 1011 1100 1111 0110


9. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (8 biți) =
1010 1101


Mantisă (23 biți) =
011 0111 1011 1100 1111 0110


Numărul zecimal în baza zece 101 011 110 100 094 convertit și scris în binar în representarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

0 - 1010 1101 - 011 0111 1011 1100 1111 0110

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Dacă numărul de convertit este negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Se convertește întâi partea întreagă; împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor de mai sus, începând din partea de sus a listei construite (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții la stânga (sau, dacă e cazul, la dreapta) astfel încât partea întreagă a acestuia să mai conțină un singur bit, diferit de '0'.
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 23 biți, fie renunțând la biții în exces, din dreapta (pierzând precizie...) fie adaugând tot la dreapta biți setați pe '0'.
  • 9. Semnul (ocupă 1 bit) este egal fie cu 1, dacă este un număr negativ, fie cu 0, dacă e un număr pozitiv.

Exemplu: convertește numărul negativ -25,347 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Se începe cu versiunea pozitivă a numărului:

    |-25,347| = 25,347;

  • 2. Convertește întâi partea întreagă, 25. Împarte în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 25 : 2 = 12 + 1;
    • 12 : 2 = 6 + 0;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    25(10) = 1 1001(2)

  • 4. Convertește apoi partea fracționară 0,347. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,347 × 2 = 0 + 0,694;
    • 2) 0,694 × 2 = 1 + 0,388;
    • 3) 0,388 × 2 = 0 + 0,776;
    • 4) 0,776 × 2 = 1 + 0,552;
    • 5) 0,552 × 2 = 1 + 0,104;
    • 6) 0,104 × 2 = 0 + 0,208
    • 7) 0,208 × 2 = 0 + 0,416;
    • 8) 0,416 × 2 = 0 + 0,832;
    • 9) 0,832 × 2 = 1 + 0,664;
    • 10) 0,664 × 2 = 1 + 0,328;
    • 11) 0,328 × 2 = 0 + 0,656;
    • 12) 0,656 × 2 = 1 + 0,312;
    • 13) 0,312 × 2 = 0 + 0,624;
    • 14) 0,624 × 2 = 1 + 0,248;
    • 15) 0,248 × 2 = 0 + 0,496;
    • 16) 0,496 × 2 = 0 + 0,992;
    • 17) 0,992 × 2 = 1 + 0,984;
    • 18) 0,984 × 2 = 1 + 0,968;
    • 19) 0,968 × 2 = 1 + 0,936;
    • 20) 0,936 × 2 = 1 + 0,872;
    • 21) 0,872 × 2 = 1 + 0,744;
    • 22) 0,744 × 2 = 1 + 0,488;
    • 23) 0,488 × 2 = 0 + 0,976;
    • 24) 0,976 × 2 = 1 + 0,952;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 23) și a fost găsită prin calcule măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,347(10) = 0,0101 1000 1101 0100 1111 1101(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    25,347(10) = 1 1001,0101 1000 1101 0100 1111 1101(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    25,347(10) =
    1 1001,0101 1000 1101 0100 1111 1101(2) =
    1 1001,0101 1000 1101 0100 1111 1101(2) × 20 =
    1,1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Până în acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar (baza 2) pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus, ținând minte toate resturile, ce vor alcătui numărul în binar:

    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea la 23 biți, prin renunțarea la biții în exces, cei din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101

    Mantisă (normalizată): 100 1010 1100 0110 1010 0111

  • Concluzia:

    Semn (1 bit) = 1 (un număr negativ)

    Exponent (8 biți) = 1000 0011

    Mantisă (23 biți) = 100 1010 1100 0110 1010 0111

  • Numărul -25,347 convertit din sistem zecimal (baza 10) în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 este:
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111