32bit IEEE 754: Nr. zecimal ↗ Binar, precizie simplă, virgulă mobilă: 2,312 Convertește (transformă) numărul în binar în reprezentarea pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754, din număr în sistem zecimal în baza zece

Numărul 2,312(10) convertit și scris în binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

1. Întâi convertește în binar (în baza 2) partea întreagă: 2.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


2(10) =


10(2)


3. Convertește în binar (baza 2) partea fracționară: 0,312.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,312 × 2 = 0 + 0,624;
  • 2) 0,624 × 2 = 1 + 0,248;
  • 3) 0,248 × 2 = 0 + 0,496;
  • 4) 0,496 × 2 = 0 + 0,992;
  • 5) 0,992 × 2 = 1 + 0,984;
  • 6) 0,984 × 2 = 1 + 0,968;
  • 7) 0,968 × 2 = 1 + 0,936;
  • 8) 0,936 × 2 = 1 + 0,872;
  • 9) 0,872 × 2 = 1 + 0,744;
  • 10) 0,744 × 2 = 1 + 0,488;
  • 11) 0,488 × 2 = 0 + 0,976;
  • 12) 0,976 × 2 = 1 + 0,952;
  • 13) 0,952 × 2 = 1 + 0,904;
  • 14) 0,904 × 2 = 1 + 0,808;
  • 15) 0,808 × 2 = 1 + 0,616;
  • 16) 0,616 × 2 = 1 + 0,232;
  • 17) 0,232 × 2 = 0 + 0,464;
  • 18) 0,464 × 2 = 0 + 0,928;
  • 19) 0,928 × 2 = 1 + 0,856;
  • 20) 0,856 × 2 = 1 + 0,712;
  • 21) 0,712 × 2 = 1 + 0,424;
  • 22) 0,424 × 2 = 0 + 0,848;
  • 23) 0,848 × 2 = 1 + 0,696;
  • 24) 0,696 × 2 = 1 + 0,392;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (pierdem precizie...)


4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,312(10) =


0,0100 1111 1101 1111 0011 1011(2)


5. Numărul pozitiv înainte de normalizare:

2,312(10) =


10,0100 1111 1101 1111 0011 1011(2)

6. Normalizează reprezentarea binară a numărului.

Mută virgula cu 1 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


2,312(10) =


10,0100 1111 1101 1111 0011 1011(2) =


10,0100 1111 1101 1111 0011 1011(2) × 20 =


1,0010 0111 1110 1111 1001 1101 1(2) × 21


7. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 1


Mantisă (nenormalizată):
1,0010 0111 1110 1111 1001 1101 1


8. Ajustează exponentul.

Folosește reprezentarea deplasată pe 8 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(8-1) - 1 =


1 + 2(8-1) - 1 =


(1 + 127)(10) =


128(10)


9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 8 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 128 : 2 = 64 + 0;
  • 64 : 2 = 32 + 0;
  • 32 : 2 = 16 + 0;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

10. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


128(10) =


1000 0000(2)


11. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 23 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 001 0011 1111 0111 1100 1110 11 =


001 0011 1111 0111 1100 1110


12. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (8 biți) =
1000 0000


Mantisă (23 biți) =
001 0011 1111 0111 1100 1110


Numărul zecimal în baza zece 2,312 convertit și scris în binar în representarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:
0 - 1000 0000 - 001 0011 1111 0111 1100 1110

Ultimele numere zecimale convertite (transformate) din baza zece în sistem binar în reprezentare pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754

Numărul 2,312 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Numărul 94 489 280 528 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Numărul -90,566 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Numărul 392 943 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Numărul 67 843 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Numărul 2,714 1 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Numărul 340 282 346 500 000 000 000 000 000 000 000 000 080 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 = ? 13 apr, 00:23 EET (UTC +2)
Toate numerele zecimale convertite (transformate) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754