Din zecimal în binar pe 64 biți IEEE 754: Transformă numărul -160,207 044 în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din sistem zecimal (baza zece)

Numărul -160,207 044(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)

1. Începe cu versiunea pozitivă a numărului:

|-160,207 044| = 160,207 044


2. Întâi convertește în binar (în baza 2) partea întreagă: 160.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 160 : 2 = 80 + 0;
  • 80 : 2 = 40 + 0;
  • 40 : 2 = 20 + 0;
  • 20 : 2 = 10 + 0;
  • 10 : 2 = 5 + 0;
  • 5 : 2 = 2 + 1;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

3. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

160(10) =


1010 0000(2)


4. Convertește în binar (baza 2) partea fracționară: 0,207 044.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,207 044 × 2 = 0 + 0,414 088;
  • 2) 0,414 088 × 2 = 0 + 0,828 176;
  • 3) 0,828 176 × 2 = 1 + 0,656 352;
  • 4) 0,656 352 × 2 = 1 + 0,312 704;
  • 5) 0,312 704 × 2 = 0 + 0,625 408;
  • 6) 0,625 408 × 2 = 1 + 0,250 816;
  • 7) 0,250 816 × 2 = 0 + 0,501 632;
  • 8) 0,501 632 × 2 = 1 + 0,003 264;
  • 9) 0,003 264 × 2 = 0 + 0,006 528;
  • 10) 0,006 528 × 2 = 0 + 0,013 056;
  • 11) 0,013 056 × 2 = 0 + 0,026 112;
  • 12) 0,026 112 × 2 = 0 + 0,052 224;
  • 13) 0,052 224 × 2 = 0 + 0,104 448;
  • 14) 0,104 448 × 2 = 0 + 0,208 896;
  • 15) 0,208 896 × 2 = 0 + 0,417 792;
  • 16) 0,417 792 × 2 = 0 + 0,835 584;
  • 17) 0,835 584 × 2 = 1 + 0,671 168;
  • 18) 0,671 168 × 2 = 1 + 0,342 336;
  • 19) 0,342 336 × 2 = 0 + 0,684 672;
  • 20) 0,684 672 × 2 = 1 + 0,369 344;
  • 21) 0,369 344 × 2 = 0 + 0,738 688;
  • 22) 0,738 688 × 2 = 1 + 0,477 376;
  • 23) 0,477 376 × 2 = 0 + 0,954 752;
  • 24) 0,954 752 × 2 = 1 + 0,909 504;
  • 25) 0,909 504 × 2 = 1 + 0,819 008;
  • 26) 0,819 008 × 2 = 1 + 0,638 016;
  • 27) 0,638 016 × 2 = 1 + 0,276 032;
  • 28) 0,276 032 × 2 = 0 + 0,552 064;
  • 29) 0,552 064 × 2 = 1 + 0,104 128;
  • 30) 0,104 128 × 2 = 0 + 0,208 256;
  • 31) 0,208 256 × 2 = 0 + 0,416 512;
  • 32) 0,416 512 × 2 = 0 + 0,833 024;
  • 33) 0,833 024 × 2 = 1 + 0,666 048;
  • 34) 0,666 048 × 2 = 1 + 0,332 096;
  • 35) 0,332 096 × 2 = 0 + 0,664 192;
  • 36) 0,664 192 × 2 = 1 + 0,328 384;
  • 37) 0,328 384 × 2 = 0 + 0,656 768;
  • 38) 0,656 768 × 2 = 1 + 0,313 536;
  • 39) 0,313 536 × 2 = 0 + 0,627 072;
  • 40) 0,627 072 × 2 = 1 + 0,254 144;
  • 41) 0,254 144 × 2 = 0 + 0,508 288;
  • 42) 0,508 288 × 2 = 1 + 0,016 576;
  • 43) 0,016 576 × 2 = 0 + 0,033 152;
  • 44) 0,033 152 × 2 = 0 + 0,066 304;
  • 45) 0,066 304 × 2 = 0 + 0,132 608;
  • 46) 0,132 608 × 2 = 0 + 0,265 216;
  • 47) 0,265 216 × 2 = 0 + 0,530 432;
  • 48) 0,530 432 × 2 = 1 + 0,060 864;
  • 49) 0,060 864 × 2 = 0 + 0,121 728;
  • 50) 0,121 728 × 2 = 0 + 0,243 456;
  • 51) 0,243 456 × 2 = 0 + 0,486 912;
  • 52) 0,486 912 × 2 = 0 + 0,973 824;
  • 53) 0,973 824 × 2 = 1 + 0,947 648;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (Pierdem din precizie - numărul convertit pe care îl vom obține în final va fi doar o foarte bună aproximare a celui inițial).


5. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,207 044(10) =


0,0011 0101 0000 0000 1101 0101 1110 1000 1101 0101 0100 0001 0000 1(2)

6. Numărul pozitiv înainte de normalizare:

160,207 044(10) =


1010 0000,0011 0101 0000 0000 1101 0101 1110 1000 1101 0101 0100 0001 0000 1(2)

7. Normalizează reprezentarea binară a numărului.

Mută virgula cu 7 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


160,207 044(10) =


1010 0000,0011 0101 0000 0000 1101 0101 1110 1000 1101 0101 0100 0001 0000 1(2) =


1010 0000,0011 0101 0000 0000 1101 0101 1110 1000 1101 0101 0100 0001 0000 1(2) × 20 =


1,0100 0000 0110 1010 0000 0001 1010 1011 1101 0001 1010 1010 1000 0010 0001(2) × 27


8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn 1 (un număr negativ)


Exponent (neajustat): 7


Mantisă (nenormalizată):
1,0100 0000 0110 1010 0000 0001 1010 1011 1101 0001 1010 1010 1000 0010 0001


9. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


7 + 2(11-1) - 1 =


(7 + 1 023)(10) =


1 030(10)


10. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 1 030 : 2 = 515 + 0;
  • 515 : 2 = 257 + 1;
  • 257 : 2 = 128 + 1;
  • 128 : 2 = 64 + 0;
  • 64 : 2 = 32 + 0;
  • 32 : 2 = 16 + 0;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

11. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


1030(10) =


100 0000 0110(2)


12. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 0100 0000 0110 1010 0000 0001 1010 1011 1101 0001 1010 1010 1000 0010 0001 =


0100 0000 0110 1010 0000 0001 1010 1011 1101 0001 1010 1010 1000


13. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
1 (un număr negativ)


Exponent (11 biți) =
100 0000 0110


Mantisă (52 biți) =
0100 0000 0110 1010 0000 0001 1010 1011 1101 0001 1010 1010 1000


Numărul zecimal în baza zece -160,207 044 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

1 - 100 0000 0110 - 0100 0000 0110 1010 0000 0001 1010 1011 1101 0001 1010 1010 1000

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100