64bit IEEE 754: Nr. zecimal ↗ Binar, precizie dublă, virgulă mobilă: -4 646 563 335 093 625 706 Convertește (transformă) numărul în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din număr în sistem zecimal în baza zece

Numărul -4 646 563 335 093 625 706(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)

1. Începe cu versiunea pozitivă a numărului:

|-4 646 563 335 093 625 706| = 4 646 563 335 093 625 706

2. Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 4 646 563 335 093 625 706 : 2 = 2 323 281 667 546 812 853 + 0;
  • 2 323 281 667 546 812 853 : 2 = 1 161 640 833 773 406 426 + 1;
  • 1 161 640 833 773 406 426 : 2 = 580 820 416 886 703 213 + 0;
  • 580 820 416 886 703 213 : 2 = 290 410 208 443 351 606 + 1;
  • 290 410 208 443 351 606 : 2 = 145 205 104 221 675 803 + 0;
  • 145 205 104 221 675 803 : 2 = 72 602 552 110 837 901 + 1;
  • 72 602 552 110 837 901 : 2 = 36 301 276 055 418 950 + 1;
  • 36 301 276 055 418 950 : 2 = 18 150 638 027 709 475 + 0;
  • 18 150 638 027 709 475 : 2 = 9 075 319 013 854 737 + 1;
  • 9 075 319 013 854 737 : 2 = 4 537 659 506 927 368 + 1;
  • 4 537 659 506 927 368 : 2 = 2 268 829 753 463 684 + 0;
  • 2 268 829 753 463 684 : 2 = 1 134 414 876 731 842 + 0;
  • 1 134 414 876 731 842 : 2 = 567 207 438 365 921 + 0;
  • 567 207 438 365 921 : 2 = 283 603 719 182 960 + 1;
  • 283 603 719 182 960 : 2 = 141 801 859 591 480 + 0;
  • 141 801 859 591 480 : 2 = 70 900 929 795 740 + 0;
  • 70 900 929 795 740 : 2 = 35 450 464 897 870 + 0;
  • 35 450 464 897 870 : 2 = 17 725 232 448 935 + 0;
  • 17 725 232 448 935 : 2 = 8 862 616 224 467 + 1;
  • 8 862 616 224 467 : 2 = 4 431 308 112 233 + 1;
  • 4 431 308 112 233 : 2 = 2 215 654 056 116 + 1;
  • 2 215 654 056 116 : 2 = 1 107 827 028 058 + 0;
  • 1 107 827 028 058 : 2 = 553 913 514 029 + 0;
  • 553 913 514 029 : 2 = 276 956 757 014 + 1;
  • 276 956 757 014 : 2 = 138 478 378 507 + 0;
  • 138 478 378 507 : 2 = 69 239 189 253 + 1;
  • 69 239 189 253 : 2 = 34 619 594 626 + 1;
  • 34 619 594 626 : 2 = 17 309 797 313 + 0;
  • 17 309 797 313 : 2 = 8 654 898 656 + 1;
  • 8 654 898 656 : 2 = 4 327 449 328 + 0;
  • 4 327 449 328 : 2 = 2 163 724 664 + 0;
  • 2 163 724 664 : 2 = 1 081 862 332 + 0;
  • 1 081 862 332 : 2 = 540 931 166 + 0;
  • 540 931 166 : 2 = 270 465 583 + 0;
  • 270 465 583 : 2 = 135 232 791 + 1;
  • 135 232 791 : 2 = 67 616 395 + 1;
  • 67 616 395 : 2 = 33 808 197 + 1;
  • 33 808 197 : 2 = 16 904 098 + 1;
  • 16 904 098 : 2 = 8 452 049 + 0;
  • 8 452 049 : 2 = 4 226 024 + 1;
  • 4 226 024 : 2 = 2 113 012 + 0;
  • 2 113 012 : 2 = 1 056 506 + 0;
  • 1 056 506 : 2 = 528 253 + 0;
  • 528 253 : 2 = 264 126 + 1;
  • 264 126 : 2 = 132 063 + 0;
  • 132 063 : 2 = 66 031 + 1;
  • 66 031 : 2 = 33 015 + 1;
  • 33 015 : 2 = 16 507 + 1;
  • 16 507 : 2 = 8 253 + 1;
  • 8 253 : 2 = 4 126 + 1;
  • 4 126 : 2 = 2 063 + 0;
  • 2 063 : 2 = 1 031 + 1;
  • 1 031 : 2 = 515 + 1;
  • 515 : 2 = 257 + 1;
  • 257 : 2 = 128 + 1;
  • 128 : 2 = 64 + 0;
  • 64 : 2 = 32 + 0;
  • 32 : 2 = 16 + 0;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

3. Construiește reprezentarea numărului pozitiv în baza 2.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


4 646 563 335 093 625 706(10) =


100 0000 0111 1011 1110 1000 1011 1100 0001 0110 1001 1100 0010 0011 0110 1010(2)


4. Normalizează reprezentarea binară a numărului.

Mută virgula cu 62 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


4 646 563 335 093 625 706(10) =


100 0000 0111 1011 1110 1000 1011 1100 0001 0110 1001 1100 0010 0011 0110 1010(2) =


100 0000 0111 1011 1110 1000 1011 1100 0001 0110 1001 1100 0010 0011 0110 1010(2) × 20 =


1,0000 0001 1110 1111 1010 0010 1111 0000 0101 1010 0111 0000 1000 1101 1010 10(2) × 262


5. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn 1 (un număr negativ)


Exponent (neajustat): 62


Mantisă (nenormalizată):
1,0000 0001 1110 1111 1010 0010 1111 0000 0101 1010 0111 0000 1000 1101 1010 10


6. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


62 + 2(11-1) - 1 =


(62 + 1 023)(10) =


1 085(10)


7. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 1 085 : 2 = 542 + 1;
  • 542 : 2 = 271 + 0;
  • 271 : 2 = 135 + 1;
  • 135 : 2 = 67 + 1;
  • 67 : 2 = 33 + 1;
  • 33 : 2 = 16 + 1;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

8. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


1085(10) =


100 0011 1101(2)


9. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 0000 0001 1110 1111 1010 0010 1111 0000 0101 1010 0111 0000 1000 11 0110 1010 =


0000 0001 1110 1111 1010 0010 1111 0000 0101 1010 0111 0000 1000


10. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
1 (un număr negativ)


Exponent (11 biți) =
100 0011 1101


Mantisă (52 biți) =
0000 0001 1110 1111 1010 0010 1111 0000 0101 1010 0111 0000 1000


Numărul zecimal în baza zece -4 646 563 335 093 625 706 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
1 - 100 0011 1101 - 0000 0001 1110 1111 1010 0010 1111 0000 0101 1010 0111 0000 1000

Ultimele numere zecimale convertite (transformate) din baza zece în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Numărul 589,78 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul -734 795 426 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 532 478 316 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 6,316 668 999 999 999 201 122 591 330 204 159 021 6 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul -0,682 4 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 594 985 866 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 5,213 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 600 066 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 600 000 000 000 000 000 000 293 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Numărul 931 937 112 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 10 sep, 07:35 UTC (GMT)
Toate numerele zecimale convertite (transformate) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100