Convertește 10 000 000 000 000 000 000 003 în binar pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din număr zecimal în baza 10

10 000 000 000 000 000 000 003(10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 biți pentru mantisă) = ?

1. Împarte numărul în mod repetat la 2.

Ținem minte fiecare rest al împărțirilor.

Stop când obținem un cât egal cu zero.

  • împărțire = cât + rest;
  • 10 000 000 000 000 000 000 003 : 2 = 5 000 000 000 000 000 000 001 + 1;
  • 5 000 000 000 000 000 000 001 : 2 = 2 500 000 000 000 000 000 000 + 1;
  • 2 500 000 000 000 000 000 000 : 2 = 1 250 000 000 000 000 000 000 + 0;
  • 1 250 000 000 000 000 000 000 : 2 = 625 000 000 000 000 000 000 + 0;
  • 625 000 000 000 000 000 000 : 2 = 312 500 000 000 000 000 000 + 0;
  • 312 500 000 000 000 000 000 : 2 = 156 250 000 000 000 000 000 + 0;
  • 156 250 000 000 000 000 000 : 2 = 78 125 000 000 000 000 000 + 0;
  • 78 125 000 000 000 000 000 : 2 = 39 062 500 000 000 000 000 + 0;
  • 39 062 500 000 000 000 000 : 2 = 19 531 250 000 000 000 000 + 0;
  • 19 531 250 000 000 000 000 : 2 = 9 765 625 000 000 000 000 + 0;
  • 9 765 625 000 000 000 000 : 2 = 4 882 812 500 000 000 000 + 0;
  • 4 882 812 500 000 000 000 : 2 = 2 441 406 250 000 000 000 + 0;
  • 2 441 406 250 000 000 000 : 2 = 1 220 703 125 000 000 000 + 0;
  • 1 220 703 125 000 000 000 : 2 = 610 351 562 500 000 000 + 0;
  • 610 351 562 500 000 000 : 2 = 305 175 781 250 000 000 + 0;
  • 305 175 781 250 000 000 : 2 = 152 587 890 625 000 000 + 0;
  • 152 587 890 625 000 000 : 2 = 76 293 945 312 500 000 + 0;
  • 76 293 945 312 500 000 : 2 = 38 146 972 656 250 000 + 0;
  • 38 146 972 656 250 000 : 2 = 19 073 486 328 125 000 + 0;
  • 19 073 486 328 125 000 : 2 = 9 536 743 164 062 500 + 0;
  • 9 536 743 164 062 500 : 2 = 4 768 371 582 031 250 + 0;
  • 4 768 371 582 031 250 : 2 = 2 384 185 791 015 625 + 0;
  • 2 384 185 791 015 625 : 2 = 1 192 092 895 507 812 + 1;
  • 1 192 092 895 507 812 : 2 = 596 046 447 753 906 + 0;
  • 596 046 447 753 906 : 2 = 298 023 223 876 953 + 0;
  • 298 023 223 876 953 : 2 = 149 011 611 938 476 + 1;
  • 149 011 611 938 476 : 2 = 74 505 805 969 238 + 0;
  • 74 505 805 969 238 : 2 = 37 252 902 984 619 + 0;
  • 37 252 902 984 619 : 2 = 18 626 451 492 309 + 1;
  • 18 626 451 492 309 : 2 = 9 313 225 746 154 + 1;
  • 9 313 225 746 154 : 2 = 4 656 612 873 077 + 0;
  • 4 656 612 873 077 : 2 = 2 328 306 436 538 + 1;
  • 2 328 306 436 538 : 2 = 1 164 153 218 269 + 0;
  • 1 164 153 218 269 : 2 = 582 076 609 134 + 1;
  • 582 076 609 134 : 2 = 291 038 304 567 + 0;
  • 291 038 304 567 : 2 = 145 519 152 283 + 1;
  • 145 519 152 283 : 2 = 72 759 576 141 + 1;
  • 72 759 576 141 : 2 = 36 379 788 070 + 1;
  • 36 379 788 070 : 2 = 18 189 894 035 + 0;
  • 18 189 894 035 : 2 = 9 094 947 017 + 1;
  • 9 094 947 017 : 2 = 4 547 473 508 + 1;
  • 4 547 473 508 : 2 = 2 273 736 754 + 0;
  • 2 273 736 754 : 2 = 1 136 868 377 + 0;
  • 1 136 868 377 : 2 = 568 434 188 + 1;
  • 568 434 188 : 2 = 284 217 094 + 0;
  • 284 217 094 : 2 = 142 108 547 + 0;
  • 142 108 547 : 2 = 71 054 273 + 1;
  • 71 054 273 : 2 = 35 527 136 + 1;
  • 35 527 136 : 2 = 17 763 568 + 0;
  • 17 763 568 : 2 = 8 881 784 + 0;
  • 8 881 784 : 2 = 4 440 892 + 0;
  • 4 440 892 : 2 = 2 220 446 + 0;
  • 2 220 446 : 2 = 1 110 223 + 0;
  • 1 110 223 : 2 = 555 111 + 1;
  • 555 111 : 2 = 277 555 + 1;
  • 277 555 : 2 = 138 777 + 1;
  • 138 777 : 2 = 69 388 + 1;
  • 69 388 : 2 = 34 694 + 0;
  • 34 694 : 2 = 17 347 + 0;
  • 17 347 : 2 = 8 673 + 1;
  • 8 673 : 2 = 4 336 + 1;
  • 4 336 : 2 = 2 168 + 0;
  • 2 168 : 2 = 1 084 + 0;
  • 1 084 : 2 = 542 + 0;
  • 542 : 2 = 271 + 0;
  • 271 : 2 = 135 + 1;
  • 135 : 2 = 67 + 1;
  • 67 : 2 = 33 + 1;
  • 33 : 2 = 16 + 1;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

10 000 000 000 000 000 000 003(10) =


10 0001 1110 0001 1001 1110 0000 1100 1001 1011 1010 1011 0010 0100 0000 0000 0000 0000 0011(2)


3. Normalizează reprezentarea binară a numărului.

Mută virgula cu 73 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:

10 000 000 000 000 000 000 003(10) =


10 0001 1110 0001 1001 1110 0000 1100 1001 1011 1010 1011 0010 0100 0000 0000 0000 0000 0011(2) =


10 0001 1110 0001 1001 1110 0000 1100 1001 1011 1010 1011 0010 0100 0000 0000 0000 0000 0011(2) × 20 =


1,0000 1111 0000 1100 1111 0000 0110 0100 1101 1101 0101 1001 0010 0000 0000 0000 0000 0001 1(2) × 273


4. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn: 0 (un număr pozitiv)


Exponent (neajustat): 73


Mantisă (nenormalizată):
1,0000 1111 0000 1100 1111 0000 0110 0100 1101 1101 0101 1001 0010 0000 0000 0000 0000 0001 1


5. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:

Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


73 + 2(11-1) - 1 =


(73 + 1 023)(10) =


1 096(10)


6. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:

  • împărțire = cât + rest;
  • 1 096 : 2 = 548 + 0;
  • 548 : 2 = 274 + 0;
  • 274 : 2 = 137 + 0;
  • 137 : 2 = 68 + 1;
  • 68 : 2 = 34 + 0;
  • 34 : 2 = 17 + 0;
  • 17 : 2 = 8 + 1;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

7. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

Exponent (ajustat) =


1096(10) =


100 0100 1000(2)


8. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.

b) Ajustează-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).

Mantisă (normalizată) =


1. 0000 1111 0000 1100 1111 0000 0110 0100 1101 1101 0101 1001 0010 0 0000 0000 0000 0000 0011 =


0000 1111 0000 1100 1111 0000 0110 0100 1101 1101 0101 1001 0010


9. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (11 biți) =
100 0100 1000


Mantisă (52 biți) =
0000 1111 0000 1100 1111 0000 0110 0100 1101 1101 0101 1001 0010


Numărul 10 000 000 000 000 000 000 003 convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0100 1000 - 0000 1111 0000 1100 1111 0000 0110 0100 1101 1101 0101 1001 0010

(64 biți IEEE 754)
  • Semn (1 bit):

    • 0

      63
  • Exponent (11 biți):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 1

      58
    • 0

      57
    • 0

      56
    • 1

      55
    • 0

      54
    • 0

      53
    • 0

      52
  • Mantisă (52 biți):

    • 0

      51
    • 0

      50
    • 0

      49
    • 0

      48
    • 1

      47
    • 1

      46
    • 1

      45
    • 1

      44
    • 0

      43
    • 0

      42
    • 0

      41
    • 0

      40
    • 1

      39
    • 1

      38
    • 0

      37
    • 0

      36
    • 1

      35
    • 1

      34
    • 1

      33
    • 1

      32
    • 0

      31
    • 0

      30
    • 0

      29
    • 0

      28
    • 0

      27
    • 1

      26
    • 1

      25
    • 0

      24
    • 0

      23
    • 1

      22
    • 0

      21
    • 0

      20
    • 1

      19
    • 1

      18
    • 0

      17
    • 1

      16
    • 1

      15
    • 1

      14
    • 0

      13
    • 1

      12
    • 0

      11
    • 1

      10
    • 0

      9
    • 1

      8
    • 1

      7
    • 0

      6
    • 0

      5
    • 1

      4
    • 0

      3
    • 0

      2
    • 1

      1
    • 0

      0

Mai multe operații de acest tip:

10 000 000 000 000 000 000 002 = ? ... 10 000 000 000 000 000 000 004 = ?


Convertește în binar pe 64 de biți, precizie dublă, virgulă mobilă standard IEEE 754

Un număr în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 e format din trei elemente: semn (ocupă un bit, este fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 de biți)

Ultimele numere zecimale convertite din baza zece în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

10 000 000 000 000 000 000 003 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,028 85 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
8 125 850 294 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,028 8 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
1,000 000 000 000 000 222 044 604 925 09 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,028 5 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,020 382 282 490 35 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
876 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,020 248 305 676 634 8 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
35,014 8 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,913 131 083 93 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
0,020 248 305 676 634 7 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:12 EET (UTC +2)
-100,24 în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 15 apr, 09:11 EET (UTC +2)
Toate numerele zecimale convertite din sistem zecimal (baza zece) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100