Din zecimal în binar pe 64 biți IEEE 754: Transformă numărul 11 111 110 110 110 110 011 000 000 000 000 000 000 000 000 000 000 000 000 000 062 în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din sistem zecimal (baza zece)

Numărul 11 111 110 110 110 110 011 000 000 000 000 000 000 000 000 000 000 000 000 000 062(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)

1. Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 11 111 110 110 110 110 011 000 000 000 000 000 000 000 000 000 000 000 000 000 062 : 2 = 5 555 555 055 055 055 005 500 000 000 000 000 000 000 000 000 000 000 000 000 031 + 0;
  • 5 555 555 055 055 055 005 500 000 000 000 000 000 000 000 000 000 000 000 000 031 : 2 = 2 777 777 527 527 527 502 750 000 000 000 000 000 000 000 000 000 000 000 000 015 + 1;
  • 2 777 777 527 527 527 502 750 000 000 000 000 000 000 000 000 000 000 000 000 015 : 2 = 1 388 888 763 763 763 751 375 000 000 000 000 000 000 000 000 000 000 000 000 007 + 1;
  • 1 388 888 763 763 763 751 375 000 000 000 000 000 000 000 000 000 000 000 000 007 : 2 = 694 444 381 881 881 875 687 500 000 000 000 000 000 000 000 000 000 000 000 003 + 1;
  • 694 444 381 881 881 875 687 500 000 000 000 000 000 000 000 000 000 000 000 003 : 2 = 347 222 190 940 940 937 843 750 000 000 000 000 000 000 000 000 000 000 000 001 + 1;
  • 347 222 190 940 940 937 843 750 000 000 000 000 000 000 000 000 000 000 000 001 : 2 = 173 611 095 470 470 468 921 875 000 000 000 000 000 000 000 000 000 000 000 000 + 1;
  • 173 611 095 470 470 468 921 875 000 000 000 000 000 000 000 000 000 000 000 000 : 2 = 86 805 547 735 235 234 460 937 500 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 86 805 547 735 235 234 460 937 500 000 000 000 000 000 000 000 000 000 000 000 : 2 = 43 402 773 867 617 617 230 468 750 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 43 402 773 867 617 617 230 468 750 000 000 000 000 000 000 000 000 000 000 000 : 2 = 21 701 386 933 808 808 615 234 375 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 21 701 386 933 808 808 615 234 375 000 000 000 000 000 000 000 000 000 000 000 : 2 = 10 850 693 466 904 404 307 617 187 500 000 000 000 000 000 000 000 000 000 000 + 0;
  • 10 850 693 466 904 404 307 617 187 500 000 000 000 000 000 000 000 000 000 000 : 2 = 5 425 346 733 452 202 153 808 593 750 000 000 000 000 000 000 000 000 000 000 + 0;
  • 5 425 346 733 452 202 153 808 593 750 000 000 000 000 000 000 000 000 000 000 : 2 = 2 712 673 366 726 101 076 904 296 875 000 000 000 000 000 000 000 000 000 000 + 0;
  • 2 712 673 366 726 101 076 904 296 875 000 000 000 000 000 000 000 000 000 000 : 2 = 1 356 336 683 363 050 538 452 148 437 500 000 000 000 000 000 000 000 000 000 + 0;
  • 1 356 336 683 363 050 538 452 148 437 500 000 000 000 000 000 000 000 000 000 : 2 = 678 168 341 681 525 269 226 074 218 750 000 000 000 000 000 000 000 000 000 + 0;
  • 678 168 341 681 525 269 226 074 218 750 000 000 000 000 000 000 000 000 000 : 2 = 339 084 170 840 762 634 613 037 109 375 000 000 000 000 000 000 000 000 000 + 0;
  • 339 084 170 840 762 634 613 037 109 375 000 000 000 000 000 000 000 000 000 : 2 = 169 542 085 420 381 317 306 518 554 687 500 000 000 000 000 000 000 000 000 + 0;
  • 169 542 085 420 381 317 306 518 554 687 500 000 000 000 000 000 000 000 000 : 2 = 84 771 042 710 190 658 653 259 277 343 750 000 000 000 000 000 000 000 000 + 0;
  • 84 771 042 710 190 658 653 259 277 343 750 000 000 000 000 000 000 000 000 : 2 = 42 385 521 355 095 329 326 629 638 671 875 000 000 000 000 000 000 000 000 + 0;
  • 42 385 521 355 095 329 326 629 638 671 875 000 000 000 000 000 000 000 000 : 2 = 21 192 760 677 547 664 663 314 819 335 937 500 000 000 000 000 000 000 000 + 0;
  • 21 192 760 677 547 664 663 314 819 335 937 500 000 000 000 000 000 000 000 : 2 = 10 596 380 338 773 832 331 657 409 667 968 750 000 000 000 000 000 000 000 + 0;
  • 10 596 380 338 773 832 331 657 409 667 968 750 000 000 000 000 000 000 000 : 2 = 5 298 190 169 386 916 165 828 704 833 984 375 000 000 000 000 000 000 000 + 0;
  • 5 298 190 169 386 916 165 828 704 833 984 375 000 000 000 000 000 000 000 : 2 = 2 649 095 084 693 458 082 914 352 416 992 187 500 000 000 000 000 000 000 + 0;
  • 2 649 095 084 693 458 082 914 352 416 992 187 500 000 000 000 000 000 000 : 2 = 1 324 547 542 346 729 041 457 176 208 496 093 750 000 000 000 000 000 000 + 0;
  • 1 324 547 542 346 729 041 457 176 208 496 093 750 000 000 000 000 000 000 : 2 = 662 273 771 173 364 520 728 588 104 248 046 875 000 000 000 000 000 000 + 0;
  • 662 273 771 173 364 520 728 588 104 248 046 875 000 000 000 000 000 000 : 2 = 331 136 885 586 682 260 364 294 052 124 023 437 500 000 000 000 000 000 + 0;
  • 331 136 885 586 682 260 364 294 052 124 023 437 500 000 000 000 000 000 : 2 = 165 568 442 793 341 130 182 147 026 062 011 718 750 000 000 000 000 000 + 0;
  • 165 568 442 793 341 130 182 147 026 062 011 718 750 000 000 000 000 000 : 2 = 82 784 221 396 670 565 091 073 513 031 005 859 375 000 000 000 000 000 + 0;
  • 82 784 221 396 670 565 091 073 513 031 005 859 375 000 000 000 000 000 : 2 = 41 392 110 698 335 282 545 536 756 515 502 929 687 500 000 000 000 000 + 0;
  • 41 392 110 698 335 282 545 536 756 515 502 929 687 500 000 000 000 000 : 2 = 20 696 055 349 167 641 272 768 378 257 751 464 843 750 000 000 000 000 + 0;
  • 20 696 055 349 167 641 272 768 378 257 751 464 843 750 000 000 000 000 : 2 = 10 348 027 674 583 820 636 384 189 128 875 732 421 875 000 000 000 000 + 0;
  • 10 348 027 674 583 820 636 384 189 128 875 732 421 875 000 000 000 000 : 2 = 5 174 013 837 291 910 318 192 094 564 437 866 210 937 500 000 000 000 + 0;
  • 5 174 013 837 291 910 318 192 094 564 437 866 210 937 500 000 000 000 : 2 = 2 587 006 918 645 955 159 096 047 282 218 933 105 468 750 000 000 000 + 0;
  • 2 587 006 918 645 955 159 096 047 282 218 933 105 468 750 000 000 000 : 2 = 1 293 503 459 322 977 579 548 023 641 109 466 552 734 375 000 000 000 + 0;
  • 1 293 503 459 322 977 579 548 023 641 109 466 552 734 375 000 000 000 : 2 = 646 751 729 661 488 789 774 011 820 554 733 276 367 187 500 000 000 + 0;
  • 646 751 729 661 488 789 774 011 820 554 733 276 367 187 500 000 000 : 2 = 323 375 864 830 744 394 887 005 910 277 366 638 183 593 750 000 000 + 0;
  • 323 375 864 830 744 394 887 005 910 277 366 638 183 593 750 000 000 : 2 = 161 687 932 415 372 197 443 502 955 138 683 319 091 796 875 000 000 + 0;
  • 161 687 932 415 372 197 443 502 955 138 683 319 091 796 875 000 000 : 2 = 80 843 966 207 686 098 721 751 477 569 341 659 545 898 437 500 000 + 0;
  • 80 843 966 207 686 098 721 751 477 569 341 659 545 898 437 500 000 : 2 = 40 421 983 103 843 049 360 875 738 784 670 829 772 949 218 750 000 + 0;
  • 40 421 983 103 843 049 360 875 738 784 670 829 772 949 218 750 000 : 2 = 20 210 991 551 921 524 680 437 869 392 335 414 886 474 609 375 000 + 0;
  • 20 210 991 551 921 524 680 437 869 392 335 414 886 474 609 375 000 : 2 = 10 105 495 775 960 762 340 218 934 696 167 707 443 237 304 687 500 + 0;
  • 10 105 495 775 960 762 340 218 934 696 167 707 443 237 304 687 500 : 2 = 5 052 747 887 980 381 170 109 467 348 083 853 721 618 652 343 750 + 0;
  • 5 052 747 887 980 381 170 109 467 348 083 853 721 618 652 343 750 : 2 = 2 526 373 943 990 190 585 054 733 674 041 926 860 809 326 171 875 + 0;
  • 2 526 373 943 990 190 585 054 733 674 041 926 860 809 326 171 875 : 2 = 1 263 186 971 995 095 292 527 366 837 020 963 430 404 663 085 937 + 1;
  • 1 263 186 971 995 095 292 527 366 837 020 963 430 404 663 085 937 : 2 = 631 593 485 997 547 646 263 683 418 510 481 715 202 331 542 968 + 1;
  • 631 593 485 997 547 646 263 683 418 510 481 715 202 331 542 968 : 2 = 315 796 742 998 773 823 131 841 709 255 240 857 601 165 771 484 + 0;
  • 315 796 742 998 773 823 131 841 709 255 240 857 601 165 771 484 : 2 = 157 898 371 499 386 911 565 920 854 627 620 428 800 582 885 742 + 0;
  • 157 898 371 499 386 911 565 920 854 627 620 428 800 582 885 742 : 2 = 78 949 185 749 693 455 782 960 427 313 810 214 400 291 442 871 + 0;
  • 78 949 185 749 693 455 782 960 427 313 810 214 400 291 442 871 : 2 = 39 474 592 874 846 727 891 480 213 656 905 107 200 145 721 435 + 1;
  • 39 474 592 874 846 727 891 480 213 656 905 107 200 145 721 435 : 2 = 19 737 296 437 423 363 945 740 106 828 452 553 600 072 860 717 + 1;
  • 19 737 296 437 423 363 945 740 106 828 452 553 600 072 860 717 : 2 = 9 868 648 218 711 681 972 870 053 414 226 276 800 036 430 358 + 1;
  • 9 868 648 218 711 681 972 870 053 414 226 276 800 036 430 358 : 2 = 4 934 324 109 355 840 986 435 026 707 113 138 400 018 215 179 + 0;
  • 4 934 324 109 355 840 986 435 026 707 113 138 400 018 215 179 : 2 = 2 467 162 054 677 920 493 217 513 353 556 569 200 009 107 589 + 1;
  • 2 467 162 054 677 920 493 217 513 353 556 569 200 009 107 589 : 2 = 1 233 581 027 338 960 246 608 756 676 778 284 600 004 553 794 + 1;
  • 1 233 581 027 338 960 246 608 756 676 778 284 600 004 553 794 : 2 = 616 790 513 669 480 123 304 378 338 389 142 300 002 276 897 + 0;
  • 616 790 513 669 480 123 304 378 338 389 142 300 002 276 897 : 2 = 308 395 256 834 740 061 652 189 169 194 571 150 001 138 448 + 1;
  • 308 395 256 834 740 061 652 189 169 194 571 150 001 138 448 : 2 = 154 197 628 417 370 030 826 094 584 597 285 575 000 569 224 + 0;
  • 154 197 628 417 370 030 826 094 584 597 285 575 000 569 224 : 2 = 77 098 814 208 685 015 413 047 292 298 642 787 500 284 612 + 0;
  • 77 098 814 208 685 015 413 047 292 298 642 787 500 284 612 : 2 = 38 549 407 104 342 507 706 523 646 149 321 393 750 142 306 + 0;
  • 38 549 407 104 342 507 706 523 646 149 321 393 750 142 306 : 2 = 19 274 703 552 171 253 853 261 823 074 660 696 875 071 153 + 0;
  • 19 274 703 552 171 253 853 261 823 074 660 696 875 071 153 : 2 = 9 637 351 776 085 626 926 630 911 537 330 348 437 535 576 + 1;
  • 9 637 351 776 085 626 926 630 911 537 330 348 437 535 576 : 2 = 4 818 675 888 042 813 463 315 455 768 665 174 218 767 788 + 0;
  • 4 818 675 888 042 813 463 315 455 768 665 174 218 767 788 : 2 = 2 409 337 944 021 406 731 657 727 884 332 587 109 383 894 + 0;
  • 2 409 337 944 021 406 731 657 727 884 332 587 109 383 894 : 2 = 1 204 668 972 010 703 365 828 863 942 166 293 554 691 947 + 0;
  • 1 204 668 972 010 703 365 828 863 942 166 293 554 691 947 : 2 = 602 334 486 005 351 682 914 431 971 083 146 777 345 973 + 1;
  • 602 334 486 005 351 682 914 431 971 083 146 777 345 973 : 2 = 301 167 243 002 675 841 457 215 985 541 573 388 672 986 + 1;
  • 301 167 243 002 675 841 457 215 985 541 573 388 672 986 : 2 = 150 583 621 501 337 920 728 607 992 770 786 694 336 493 + 0;
  • 150 583 621 501 337 920 728 607 992 770 786 694 336 493 : 2 = 75 291 810 750 668 960 364 303 996 385 393 347 168 246 + 1;
  • 75 291 810 750 668 960 364 303 996 385 393 347 168 246 : 2 = 37 645 905 375 334 480 182 151 998 192 696 673 584 123 + 0;
  • 37 645 905 375 334 480 182 151 998 192 696 673 584 123 : 2 = 18 822 952 687 667 240 091 075 999 096 348 336 792 061 + 1;
  • 18 822 952 687 667 240 091 075 999 096 348 336 792 061 : 2 = 9 411 476 343 833 620 045 537 999 548 174 168 396 030 + 1;
  • 9 411 476 343 833 620 045 537 999 548 174 168 396 030 : 2 = 4 705 738 171 916 810 022 768 999 774 087 084 198 015 + 0;
  • 4 705 738 171 916 810 022 768 999 774 087 084 198 015 : 2 = 2 352 869 085 958 405 011 384 499 887 043 542 099 007 + 1;
  • 2 352 869 085 958 405 011 384 499 887 043 542 099 007 : 2 = 1 176 434 542 979 202 505 692 249 943 521 771 049 503 + 1;
  • 1 176 434 542 979 202 505 692 249 943 521 771 049 503 : 2 = 588 217 271 489 601 252 846 124 971 760 885 524 751 + 1;
  • 588 217 271 489 601 252 846 124 971 760 885 524 751 : 2 = 294 108 635 744 800 626 423 062 485 880 442 762 375 + 1;
  • 294 108 635 744 800 626 423 062 485 880 442 762 375 : 2 = 147 054 317 872 400 313 211 531 242 940 221 381 187 + 1;
  • 147 054 317 872 400 313 211 531 242 940 221 381 187 : 2 = 73 527 158 936 200 156 605 765 621 470 110 690 593 + 1;
  • 73 527 158 936 200 156 605 765 621 470 110 690 593 : 2 = 36 763 579 468 100 078 302 882 810 735 055 345 296 + 1;
  • 36 763 579 468 100 078 302 882 810 735 055 345 296 : 2 = 18 381 789 734 050 039 151 441 405 367 527 672 648 + 0;
  • 18 381 789 734 050 039 151 441 405 367 527 672 648 : 2 = 9 190 894 867 025 019 575 720 702 683 763 836 324 + 0;
  • 9 190 894 867 025 019 575 720 702 683 763 836 324 : 2 = 4 595 447 433 512 509 787 860 351 341 881 918 162 + 0;
  • 4 595 447 433 512 509 787 860 351 341 881 918 162 : 2 = 2 297 723 716 756 254 893 930 175 670 940 959 081 + 0;
  • 2 297 723 716 756 254 893 930 175 670 940 959 081 : 2 = 1 148 861 858 378 127 446 965 087 835 470 479 540 + 1;
  • 1 148 861 858 378 127 446 965 087 835 470 479 540 : 2 = 574 430 929 189 063 723 482 543 917 735 239 770 + 0;
  • 574 430 929 189 063 723 482 543 917 735 239 770 : 2 = 287 215 464 594 531 861 741 271 958 867 619 885 + 0;
  • 287 215 464 594 531 861 741 271 958 867 619 885 : 2 = 143 607 732 297 265 930 870 635 979 433 809 942 + 1;
  • 143 607 732 297 265 930 870 635 979 433 809 942 : 2 = 71 803 866 148 632 965 435 317 989 716 904 971 + 0;
  • 71 803 866 148 632 965 435 317 989 716 904 971 : 2 = 35 901 933 074 316 482 717 658 994 858 452 485 + 1;
  • 35 901 933 074 316 482 717 658 994 858 452 485 : 2 = 17 950 966 537 158 241 358 829 497 429 226 242 + 1;
  • 17 950 966 537 158 241 358 829 497 429 226 242 : 2 = 8 975 483 268 579 120 679 414 748 714 613 121 + 0;
  • 8 975 483 268 579 120 679 414 748 714 613 121 : 2 = 4 487 741 634 289 560 339 707 374 357 306 560 + 1;
  • 4 487 741 634 289 560 339 707 374 357 306 560 : 2 = 2 243 870 817 144 780 169 853 687 178 653 280 + 0;
  • 2 243 870 817 144 780 169 853 687 178 653 280 : 2 = 1 121 935 408 572 390 084 926 843 589 326 640 + 0;
  • 1 121 935 408 572 390 084 926 843 589 326 640 : 2 = 560 967 704 286 195 042 463 421 794 663 320 + 0;
  • 560 967 704 286 195 042 463 421 794 663 320 : 2 = 280 483 852 143 097 521 231 710 897 331 660 + 0;
  • 280 483 852 143 097 521 231 710 897 331 660 : 2 = 140 241 926 071 548 760 615 855 448 665 830 + 0;
  • 140 241 926 071 548 760 615 855 448 665 830 : 2 = 70 120 963 035 774 380 307 927 724 332 915 + 0;
  • 70 120 963 035 774 380 307 927 724 332 915 : 2 = 35 060 481 517 887 190 153 963 862 166 457 + 1;
  • 35 060 481 517 887 190 153 963 862 166 457 : 2 = 17 530 240 758 943 595 076 981 931 083 228 + 1;
  • 17 530 240 758 943 595 076 981 931 083 228 : 2 = 8 765 120 379 471 797 538 490 965 541 614 + 0;
  • 8 765 120 379 471 797 538 490 965 541 614 : 2 = 4 382 560 189 735 898 769 245 482 770 807 + 0;
  • 4 382 560 189 735 898 769 245 482 770 807 : 2 = 2 191 280 094 867 949 384 622 741 385 403 + 1;
  • 2 191 280 094 867 949 384 622 741 385 403 : 2 = 1 095 640 047 433 974 692 311 370 692 701 + 1;
  • 1 095 640 047 433 974 692 311 370 692 701 : 2 = 547 820 023 716 987 346 155 685 346 350 + 1;
  • 547 820 023 716 987 346 155 685 346 350 : 2 = 273 910 011 858 493 673 077 842 673 175 + 0;
  • 273 910 011 858 493 673 077 842 673 175 : 2 = 136 955 005 929 246 836 538 921 336 587 + 1;
  • 136 955 005 929 246 836 538 921 336 587 : 2 = 68 477 502 964 623 418 269 460 668 293 + 1;
  • 68 477 502 964 623 418 269 460 668 293 : 2 = 34 238 751 482 311 709 134 730 334 146 + 1;
  • 34 238 751 482 311 709 134 730 334 146 : 2 = 17 119 375 741 155 854 567 365 167 073 + 0;
  • 17 119 375 741 155 854 567 365 167 073 : 2 = 8 559 687 870 577 927 283 682 583 536 + 1;
  • 8 559 687 870 577 927 283 682 583 536 : 2 = 4 279 843 935 288 963 641 841 291 768 + 0;
  • 4 279 843 935 288 963 641 841 291 768 : 2 = 2 139 921 967 644 481 820 920 645 884 + 0;
  • 2 139 921 967 644 481 820 920 645 884 : 2 = 1 069 960 983 822 240 910 460 322 942 + 0;
  • 1 069 960 983 822 240 910 460 322 942 : 2 = 534 980 491 911 120 455 230 161 471 + 0;
  • 534 980 491 911 120 455 230 161 471 : 2 = 267 490 245 955 560 227 615 080 735 + 1;
  • 267 490 245 955 560 227 615 080 735 : 2 = 133 745 122 977 780 113 807 540 367 + 1;
  • 133 745 122 977 780 113 807 540 367 : 2 = 66 872 561 488 890 056 903 770 183 + 1;
  • 66 872 561 488 890 056 903 770 183 : 2 = 33 436 280 744 445 028 451 885 091 + 1;
  • 33 436 280 744 445 028 451 885 091 : 2 = 16 718 140 372 222 514 225 942 545 + 1;
  • 16 718 140 372 222 514 225 942 545 : 2 = 8 359 070 186 111 257 112 971 272 + 1;
  • 8 359 070 186 111 257 112 971 272 : 2 = 4 179 535 093 055 628 556 485 636 + 0;
  • 4 179 535 093 055 628 556 485 636 : 2 = 2 089 767 546 527 814 278 242 818 + 0;
  • 2 089 767 546 527 814 278 242 818 : 2 = 1 044 883 773 263 907 139 121 409 + 0;
  • 1 044 883 773 263 907 139 121 409 : 2 = 522 441 886 631 953 569 560 704 + 1;
  • 522 441 886 631 953 569 560 704 : 2 = 261 220 943 315 976 784 780 352 + 0;
  • 261 220 943 315 976 784 780 352 : 2 = 130 610 471 657 988 392 390 176 + 0;
  • 130 610 471 657 988 392 390 176 : 2 = 65 305 235 828 994 196 195 088 + 0;
  • 65 305 235 828 994 196 195 088 : 2 = 32 652 617 914 497 098 097 544 + 0;
  • 32 652 617 914 497 098 097 544 : 2 = 16 326 308 957 248 549 048 772 + 0;
  • 16 326 308 957 248 549 048 772 : 2 = 8 163 154 478 624 274 524 386 + 0;
  • 8 163 154 478 624 274 524 386 : 2 = 4 081 577 239 312 137 262 193 + 0;
  • 4 081 577 239 312 137 262 193 : 2 = 2 040 788 619 656 068 631 096 + 1;
  • 2 040 788 619 656 068 631 096 : 2 = 1 020 394 309 828 034 315 548 + 0;
  • 1 020 394 309 828 034 315 548 : 2 = 510 197 154 914 017 157 774 + 0;
  • 510 197 154 914 017 157 774 : 2 = 255 098 577 457 008 578 887 + 0;
  • 255 098 577 457 008 578 887 : 2 = 127 549 288 728 504 289 443 + 1;
  • 127 549 288 728 504 289 443 : 2 = 63 774 644 364 252 144 721 + 1;
  • 63 774 644 364 252 144 721 : 2 = 31 887 322 182 126 072 360 + 1;
  • 31 887 322 182 126 072 360 : 2 = 15 943 661 091 063 036 180 + 0;
  • 15 943 661 091 063 036 180 : 2 = 7 971 830 545 531 518 090 + 0;
  • 7 971 830 545 531 518 090 : 2 = 3 985 915 272 765 759 045 + 0;
  • 3 985 915 272 765 759 045 : 2 = 1 992 957 636 382 879 522 + 1;
  • 1 992 957 636 382 879 522 : 2 = 996 478 818 191 439 761 + 0;
  • 996 478 818 191 439 761 : 2 = 498 239 409 095 719 880 + 1;
  • 498 239 409 095 719 880 : 2 = 249 119 704 547 859 940 + 0;
  • 249 119 704 547 859 940 : 2 = 124 559 852 273 929 970 + 0;
  • 124 559 852 273 929 970 : 2 = 62 279 926 136 964 985 + 0;
  • 62 279 926 136 964 985 : 2 = 31 139 963 068 482 492 + 1;
  • 31 139 963 068 482 492 : 2 = 15 569 981 534 241 246 + 0;
  • 15 569 981 534 241 246 : 2 = 7 784 990 767 120 623 + 0;
  • 7 784 990 767 120 623 : 2 = 3 892 495 383 560 311 + 1;
  • 3 892 495 383 560 311 : 2 = 1 946 247 691 780 155 + 1;
  • 1 946 247 691 780 155 : 2 = 973 123 845 890 077 + 1;
  • 973 123 845 890 077 : 2 = 486 561 922 945 038 + 1;
  • 486 561 922 945 038 : 2 = 243 280 961 472 519 + 0;
  • 243 280 961 472 519 : 2 = 121 640 480 736 259 + 1;
  • 121 640 480 736 259 : 2 = 60 820 240 368 129 + 1;
  • 60 820 240 368 129 : 2 = 30 410 120 184 064 + 1;
  • 30 410 120 184 064 : 2 = 15 205 060 092 032 + 0;
  • 15 205 060 092 032 : 2 = 7 602 530 046 016 + 0;
  • 7 602 530 046 016 : 2 = 3 801 265 023 008 + 0;
  • 3 801 265 023 008 : 2 = 1 900 632 511 504 + 0;
  • 1 900 632 511 504 : 2 = 950 316 255 752 + 0;
  • 950 316 255 752 : 2 = 475 158 127 876 + 0;
  • 475 158 127 876 : 2 = 237 579 063 938 + 0;
  • 237 579 063 938 : 2 = 118 789 531 969 + 0;
  • 118 789 531 969 : 2 = 59 394 765 984 + 1;
  • 59 394 765 984 : 2 = 29 697 382 992 + 0;
  • 29 697 382 992 : 2 = 14 848 691 496 + 0;
  • 14 848 691 496 : 2 = 7 424 345 748 + 0;
  • 7 424 345 748 : 2 = 3 712 172 874 + 0;
  • 3 712 172 874 : 2 = 1 856 086 437 + 0;
  • 1 856 086 437 : 2 = 928 043 218 + 1;
  • 928 043 218 : 2 = 464 021 609 + 0;
  • 464 021 609 : 2 = 232 010 804 + 1;
  • 232 010 804 : 2 = 116 005 402 + 0;
  • 116 005 402 : 2 = 58 002 701 + 0;
  • 58 002 701 : 2 = 29 001 350 + 1;
  • 29 001 350 : 2 = 14 500 675 + 0;
  • 14 500 675 : 2 = 7 250 337 + 1;
  • 7 250 337 : 2 = 3 625 168 + 1;
  • 3 625 168 : 2 = 1 812 584 + 0;
  • 1 812 584 : 2 = 906 292 + 0;
  • 906 292 : 2 = 453 146 + 0;
  • 453 146 : 2 = 226 573 + 0;
  • 226 573 : 2 = 113 286 + 1;
  • 113 286 : 2 = 56 643 + 0;
  • 56 643 : 2 = 28 321 + 1;
  • 28 321 : 2 = 14 160 + 1;
  • 14 160 : 2 = 7 080 + 0;
  • 7 080 : 2 = 3 540 + 0;
  • 3 540 : 2 = 1 770 + 0;
  • 1 770 : 2 = 885 + 0;
  • 885 : 2 = 442 + 1;
  • 442 : 2 = 221 + 0;
  • 221 : 2 = 110 + 1;
  • 110 : 2 = 55 + 0;
  • 55 : 2 = 27 + 1;
  • 27 : 2 = 13 + 1;
  • 13 : 2 = 6 + 1;
  • 6 : 2 = 3 + 0;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

11 111 110 110 110 110 011 000 000 000 000 000 000 000 000 000 000 000 000 000 062(10) =


110 1110 1010 0001 1010 0001 1010 0101 0000 0100 0000 0011 1011 1100 1000 1010 0011 1000 1000 0000 1000 1111 1100 0010 1110 1110 0110 0000 0101 1010 0100 0011 1111 1011 0101 1000 1000 0101 1011 1000 1100 0000 0000 0000 0000 0000 0000 0000 0000 0011 1110(2)


3. Normalizează reprezentarea binară a numărului.

Mută virgula cu 202 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


11 111 110 110 110 110 011 000 000 000 000 000 000 000 000 000 000 000 000 000 062(10) =


110 1110 1010 0001 1010 0001 1010 0101 0000 0100 0000 0011 1011 1100 1000 1010 0011 1000 1000 0000 1000 1111 1100 0010 1110 1110 0110 0000 0101 1010 0100 0011 1111 1011 0101 1000 1000 0101 1011 1000 1100 0000 0000 0000 0000 0000 0000 0000 0000 0011 1110(2) =


110 1110 1010 0001 1010 0001 1010 0101 0000 0100 0000 0011 1011 1100 1000 1010 0011 1000 1000 0000 1000 1111 1100 0010 1110 1110 0110 0000 0101 1010 0100 0011 1111 1011 0101 1000 1000 0101 1011 1000 1100 0000 0000 0000 0000 0000 0000 0000 0000 0011 1110(2) × 20 =


1,1011 1010 1000 0110 1000 0110 1001 0100 0001 0000 0000 1110 1111 0010 0010 1000 1110 0010 0000 0010 0011 1111 0000 1011 1011 1001 1000 0001 0110 1001 0000 1111 1110 1101 0110 0010 0001 0110 1110 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 10(2) × 2202


4. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 202


Mantisă (nenormalizată):
1,1011 1010 1000 0110 1000 0110 1001 0100 0001 0000 0000 1110 1111 0010 0010 1000 1110 0010 0000 0010 0011 1111 0000 1011 1011 1001 1000 0001 0110 1001 0000 1111 1110 1101 0110 0010 0001 0110 1110 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 10


5. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


202 + 2(11-1) - 1 =


(202 + 1 023)(10) =


1 225(10)


6. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 1 225 : 2 = 612 + 1;
  • 612 : 2 = 306 + 0;
  • 306 : 2 = 153 + 0;
  • 153 : 2 = 76 + 1;
  • 76 : 2 = 38 + 0;
  • 38 : 2 = 19 + 0;
  • 19 : 2 = 9 + 1;
  • 9 : 2 = 4 + 1;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

7. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


1225(10) =


100 1100 1001(2)


8. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 1011 1010 1000 0110 1000 0110 1001 0100 0001 0000 0000 1110 1111 00 1000 1010 0011 1000 1000 0000 1000 1111 1100 0010 1110 1110 0110 0000 0101 1010 0100 0011 1111 1011 0101 1000 1000 0101 1011 1000 1100 0000 0000 0000 0000 0000 0000 0000 0000 0011 1110 =


1011 1010 1000 0110 1000 0110 1001 0100 0001 0000 0000 1110 1111


9. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (11 biți) =
100 1100 1001


Mantisă (52 biți) =
1011 1010 1000 0110 1000 0110 1001 0100 0001 0000 0000 1110 1111


Numărul zecimal în baza zece 11 111 110 110 110 110 011 000 000 000 000 000 000 000 000 000 000 000 000 000 062 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

0 - 100 1100 1001 - 1011 1010 1000 0110 1000 0110 1001 0100 0001 0000 0000 1110 1111

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100