64bit IEEE 754: Nr. zecimal -> Binar, precizie dublă, virgulă mobilă: 138 941 113 189 979 980 Convertește (transformă) numărul în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din număr în sistem zecimal în baza zece

Numărul 138 941 113 189 979 980(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)

1. Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 138 941 113 189 979 980 : 2 = 69 470 556 594 989 990 + 0;
  • 69 470 556 594 989 990 : 2 = 34 735 278 297 494 995 + 0;
  • 34 735 278 297 494 995 : 2 = 17 367 639 148 747 497 + 1;
  • 17 367 639 148 747 497 : 2 = 8 683 819 574 373 748 + 1;
  • 8 683 819 574 373 748 : 2 = 4 341 909 787 186 874 + 0;
  • 4 341 909 787 186 874 : 2 = 2 170 954 893 593 437 + 0;
  • 2 170 954 893 593 437 : 2 = 1 085 477 446 796 718 + 1;
  • 1 085 477 446 796 718 : 2 = 542 738 723 398 359 + 0;
  • 542 738 723 398 359 : 2 = 271 369 361 699 179 + 1;
  • 271 369 361 699 179 : 2 = 135 684 680 849 589 + 1;
  • 135 684 680 849 589 : 2 = 67 842 340 424 794 + 1;
  • 67 842 340 424 794 : 2 = 33 921 170 212 397 + 0;
  • 33 921 170 212 397 : 2 = 16 960 585 106 198 + 1;
  • 16 960 585 106 198 : 2 = 8 480 292 553 099 + 0;
  • 8 480 292 553 099 : 2 = 4 240 146 276 549 + 1;
  • 4 240 146 276 549 : 2 = 2 120 073 138 274 + 1;
  • 2 120 073 138 274 : 2 = 1 060 036 569 137 + 0;
  • 1 060 036 569 137 : 2 = 530 018 284 568 + 1;
  • 530 018 284 568 : 2 = 265 009 142 284 + 0;
  • 265 009 142 284 : 2 = 132 504 571 142 + 0;
  • 132 504 571 142 : 2 = 66 252 285 571 + 0;
  • 66 252 285 571 : 2 = 33 126 142 785 + 1;
  • 33 126 142 785 : 2 = 16 563 071 392 + 1;
  • 16 563 071 392 : 2 = 8 281 535 696 + 0;
  • 8 281 535 696 : 2 = 4 140 767 848 + 0;
  • 4 140 767 848 : 2 = 2 070 383 924 + 0;
  • 2 070 383 924 : 2 = 1 035 191 962 + 0;
  • 1 035 191 962 : 2 = 517 595 981 + 0;
  • 517 595 981 : 2 = 258 797 990 + 1;
  • 258 797 990 : 2 = 129 398 995 + 0;
  • 129 398 995 : 2 = 64 699 497 + 1;
  • 64 699 497 : 2 = 32 349 748 + 1;
  • 32 349 748 : 2 = 16 174 874 + 0;
  • 16 174 874 : 2 = 8 087 437 + 0;
  • 8 087 437 : 2 = 4 043 718 + 1;
  • 4 043 718 : 2 = 2 021 859 + 0;
  • 2 021 859 : 2 = 1 010 929 + 1;
  • 1 010 929 : 2 = 505 464 + 1;
  • 505 464 : 2 = 252 732 + 0;
  • 252 732 : 2 = 126 366 + 0;
  • 126 366 : 2 = 63 183 + 0;
  • 63 183 : 2 = 31 591 + 1;
  • 31 591 : 2 = 15 795 + 1;
  • 15 795 : 2 = 7 897 + 1;
  • 7 897 : 2 = 3 948 + 1;
  • 3 948 : 2 = 1 974 + 0;
  • 1 974 : 2 = 987 + 0;
  • 987 : 2 = 493 + 1;
  • 493 : 2 = 246 + 1;
  • 246 : 2 = 123 + 0;
  • 123 : 2 = 61 + 1;
  • 61 : 2 = 30 + 1;
  • 30 : 2 = 15 + 0;
  • 15 : 2 = 7 + 1;
  • 7 : 2 = 3 + 1;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


138 941 113 189 979 980(10) =


1 1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100 1100(2)


3. Normalizează reprezentarea binară a numărului.

Mută virgula cu 56 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


138 941 113 189 979 980(10) =


1 1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100 1100(2) =


1 1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100 1100(2) × 20 =


1,1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100 1100(2) × 256


4. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 56


Mantisă (nenormalizată):
1,1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100 1100


5. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


56 + 2(11-1) - 1 =


(56 + 1 023)(10) =


1 079(10)


6. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 1 079 : 2 = 539 + 1;
  • 539 : 2 = 269 + 1;
  • 269 : 2 = 134 + 1;
  • 134 : 2 = 67 + 0;
  • 67 : 2 = 33 + 1;
  • 33 : 2 = 16 + 1;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

7. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


1079(10) =


100 0011 0111(2)


8. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100 1100 =


1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100


9. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (11 biți) =
100 0011 0111


Mantisă (52 biți) =
1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100


Numărul zecimal în baza zece 138 941 113 189 979 980 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0011 0111 - 1110 1101 1001 1110 0011 0100 1101 0000 0110 0010 1101 0111 0100

(64 biți IEEE 754)
  • Semn (1 bit):

    • 0

      63
  • Exponent (11 biți):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 1

      57
    • 1

      56
    • 0

      55
    • 1

      54
    • 1

      53
    • 1

      52
  • Mantisă (52 biți):

    • 1

      51
    • 1

      50
    • 1

      49
    • 0

      48
    • 1

      47
    • 1

      46
    • 0

      45
    • 1

      44
    • 1

      43
    • 0

      42
    • 0

      41
    • 1

      40
    • 1

      39
    • 1

      38
    • 1

      37
    • 0

      36
    • 0

      35
    • 0

      34
    • 1

      33
    • 1

      32
    • 0

      31
    • 1

      30
    • 0

      29
    • 0

      28
    • 1

      27
    • 1

      26
    • 0

      25
    • 1

      24
    • 0

      23
    • 0

      22
    • 0

      21
    • 0

      20
    • 0

      19
    • 1

      18
    • 1

      17
    • 0

      16
    • 0

      15
    • 0

      14
    • 1

      13
    • 0

      12
    • 1

      11
    • 1

      10
    • 0

      9
    • 1

      8
    • 0

      7
    • 1

      6
    • 1

      5
    • 1

      4
    • 0

      3
    • 1

      2
    • 0

      1
    • 0

      0

Ultimele numere zecimale convertite (transformate) din baza zece în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Numărul 138 941 113 189 979 980 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 207 171 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 70 368 744 177 565 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 18 446 744 071 562 068 002 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 673 734 483 238 000 219 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 76 561 199 101 264 704 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 1 100 000 000 011 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 076 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul -1 873 258 435 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 336 081 122 192 523 191 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Numărul 1 000 000 000 111 011 100 100 009 999 999 999 999 999 999 999 999 999 999 999 999 936 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 06:22 EET (UTC +2)
Toate numerele zecimale convertite (transformate) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100