64bit IEEE 754: Nr. zecimal -> Binar, precizie dublă, virgulă mobilă: 27,666 406 26 Convertește (transformă) numărul în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din număr în sistem zecimal în baza zece

Numărul 27,666 406 26(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)

1. Întâi convertește în binar (în baza 2) partea întreagă: 27.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 27 : 2 = 13 + 1;
  • 13 : 2 = 6 + 1;
  • 6 : 2 = 3 + 0;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


27(10) =


1 1011(2)


3. Convertește în binar (baza 2) partea fracționară: 0,666 406 26.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,666 406 26 × 2 = 1 + 0,332 812 52;
  • 2) 0,332 812 52 × 2 = 0 + 0,665 625 04;
  • 3) 0,665 625 04 × 2 = 1 + 0,331 250 08;
  • 4) 0,331 250 08 × 2 = 0 + 0,662 500 16;
  • 5) 0,662 500 16 × 2 = 1 + 0,325 000 32;
  • 6) 0,325 000 32 × 2 = 0 + 0,650 000 64;
  • 7) 0,650 000 64 × 2 = 1 + 0,300 001 28;
  • 8) 0,300 001 28 × 2 = 0 + 0,600 002 56;
  • 9) 0,600 002 56 × 2 = 1 + 0,200 005 12;
  • 10) 0,200 005 12 × 2 = 0 + 0,400 010 24;
  • 11) 0,400 010 24 × 2 = 0 + 0,800 020 48;
  • 12) 0,800 020 48 × 2 = 1 + 0,600 040 96;
  • 13) 0,600 040 96 × 2 = 1 + 0,200 081 92;
  • 14) 0,200 081 92 × 2 = 0 + 0,400 163 84;
  • 15) 0,400 163 84 × 2 = 0 + 0,800 327 68;
  • 16) 0,800 327 68 × 2 = 1 + 0,600 655 36;
  • 17) 0,600 655 36 × 2 = 1 + 0,201 310 72;
  • 18) 0,201 310 72 × 2 = 0 + 0,402 621 44;
  • 19) 0,402 621 44 × 2 = 0 + 0,805 242 88;
  • 20) 0,805 242 88 × 2 = 1 + 0,610 485 76;
  • 21) 0,610 485 76 × 2 = 1 + 0,220 971 52;
  • 22) 0,220 971 52 × 2 = 0 + 0,441 943 04;
  • 23) 0,441 943 04 × 2 = 0 + 0,883 886 08;
  • 24) 0,883 886 08 × 2 = 1 + 0,767 772 16;
  • 25) 0,767 772 16 × 2 = 1 + 0,535 544 32;
  • 26) 0,535 544 32 × 2 = 1 + 0,071 088 64;
  • 27) 0,071 088 64 × 2 = 0 + 0,142 177 28;
  • 28) 0,142 177 28 × 2 = 0 + 0,284 354 56;
  • 29) 0,284 354 56 × 2 = 0 + 0,568 709 12;
  • 30) 0,568 709 12 × 2 = 1 + 0,137 418 24;
  • 31) 0,137 418 24 × 2 = 0 + 0,274 836 48;
  • 32) 0,274 836 48 × 2 = 0 + 0,549 672 96;
  • 33) 0,549 672 96 × 2 = 1 + 0,099 345 92;
  • 34) 0,099 345 92 × 2 = 0 + 0,198 691 84;
  • 35) 0,198 691 84 × 2 = 0 + 0,397 383 68;
  • 36) 0,397 383 68 × 2 = 0 + 0,794 767 36;
  • 37) 0,794 767 36 × 2 = 1 + 0,589 534 72;
  • 38) 0,589 534 72 × 2 = 1 + 0,179 069 44;
  • 39) 0,179 069 44 × 2 = 0 + 0,358 138 88;
  • 40) 0,358 138 88 × 2 = 0 + 0,716 277 76;
  • 41) 0,716 277 76 × 2 = 1 + 0,432 555 52;
  • 42) 0,432 555 52 × 2 = 0 + 0,865 111 04;
  • 43) 0,865 111 04 × 2 = 1 + 0,730 222 08;
  • 44) 0,730 222 08 × 2 = 1 + 0,460 444 16;
  • 45) 0,460 444 16 × 2 = 0 + 0,920 888 32;
  • 46) 0,920 888 32 × 2 = 1 + 0,841 776 64;
  • 47) 0,841 776 64 × 2 = 1 + 0,683 553 28;
  • 48) 0,683 553 28 × 2 = 1 + 0,367 106 56;
  • 49) 0,367 106 56 × 2 = 0 + 0,734 213 12;
  • 50) 0,734 213 12 × 2 = 1 + 0,468 426 24;
  • 51) 0,468 426 24 × 2 = 0 + 0,936 852 48;
  • 52) 0,936 852 48 × 2 = 1 + 0,873 704 96;
  • 53) 0,873 704 96 × 2 = 1 + 0,747 409 92;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (pierdem precizie...)


4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,666 406 26(10) =


0,1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0101 1(2)


5. Numărul pozitiv înainte de normalizare:

27,666 406 26(10) =


1 1011,1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0101 1(2)

6. Normalizează reprezentarea binară a numărului.

Mută virgula cu 4 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


27,666 406 26(10) =


1 1011,1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0101 1(2) =


1 1011,1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0101 1(2) × 20 =


1,1011 1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0101 1(2) × 24


7. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 4


Mantisă (nenormalizată):
1,1011 1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0101 1


8. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


4 + 2(11-1) - 1 =


(4 + 1 023)(10) =


1 027(10)


9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 1 027 : 2 = 513 + 1;
  • 513 : 2 = 256 + 1;
  • 256 : 2 = 128 + 0;
  • 128 : 2 = 64 + 0;
  • 64 : 2 = 32 + 0;
  • 32 : 2 = 16 + 0;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

10. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


1027(10) =


100 0000 0011(2)


11. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 1011 1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111 0 1011 =


1011 1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111


12. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (11 biți) =
100 0000 0011


Mantisă (52 biți) =
1011 1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111


Numărul zecimal în baza zece 27,666 406 26 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0000 0011 - 1011 1010 1010 1001 1001 1001 1001 1100 0100 1000 1100 1011 0111

(64 biți IEEE 754)
  • Semn (1 bit):

    • 0

      63
  • Exponent (11 biți):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 0

      57
    • 0

      56
    • 0

      55
    • 0

      54
    • 1

      53
    • 1

      52
  • Mantisă (52 biți):

    • 1

      51
    • 0

      50
    • 1

      49
    • 1

      48
    • 1

      47
    • 0

      46
    • 1

      45
    • 0

      44
    • 1

      43
    • 0

      42
    • 1

      41
    • 0

      40
    • 1

      39
    • 0

      38
    • 0

      37
    • 1

      36
    • 1

      35
    • 0

      34
    • 0

      33
    • 1

      32
    • 1

      31
    • 0

      30
    • 0

      29
    • 1

      28
    • 1

      27
    • 0

      26
    • 0

      25
    • 1

      24
    • 1

      23
    • 1

      22
    • 0

      21
    • 0

      20
    • 0

      19
    • 1

      18
    • 0

      17
    • 0

      16
    • 1

      15
    • 0

      14
    • 0

      13
    • 0

      12
    • 1

      11
    • 1

      10
    • 0

      9
    • 0

      8
    • 1

      7
    • 0

      6
    • 1

      5
    • 1

      4
    • 0

      3
    • 1

      2
    • 1

      1
    • 1

      0

Ultimele numere zecimale convertite (transformate) din baza zece în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Numărul 27,666 406 26 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul -43 152 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul -0,076 923 09 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul 4 510 000 064 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul 1 111 576 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul -92 559 592 117 433 135 999 999 999 999 999 999 999 999 999 999 999 999 999 999 908 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul 7 012 019 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul 171 704 052 242 579 713 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul -100 213 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Numărul 100 232 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 27 feb, 05:03 EET (UTC +2)
Toate numerele zecimale convertite (transformate) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100