64bit IEEE 754: Nr. zecimal -> Binar, precizie dublă, virgulă mobilă: 27,666 406 27 Convertește (transformă) numărul în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din număr în sistem zecimal în baza zece

Numărul 27,666 406 27(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)

1. Întâi convertește în binar (în baza 2) partea întreagă: 27.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 27 : 2 = 13 + 1;
  • 13 : 2 = 6 + 1;
  • 6 : 2 = 3 + 0;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


27(10) =


1 1011(2)


3. Convertește în binar (baza 2) partea fracționară: 0,666 406 27.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,666 406 27 × 2 = 1 + 0,332 812 54;
  • 2) 0,332 812 54 × 2 = 0 + 0,665 625 08;
  • 3) 0,665 625 08 × 2 = 1 + 0,331 250 16;
  • 4) 0,331 250 16 × 2 = 0 + 0,662 500 32;
  • 5) 0,662 500 32 × 2 = 1 + 0,325 000 64;
  • 6) 0,325 000 64 × 2 = 0 + 0,650 001 28;
  • 7) 0,650 001 28 × 2 = 1 + 0,300 002 56;
  • 8) 0,300 002 56 × 2 = 0 + 0,600 005 12;
  • 9) 0,600 005 12 × 2 = 1 + 0,200 010 24;
  • 10) 0,200 010 24 × 2 = 0 + 0,400 020 48;
  • 11) 0,400 020 48 × 2 = 0 + 0,800 040 96;
  • 12) 0,800 040 96 × 2 = 1 + 0,600 081 92;
  • 13) 0,600 081 92 × 2 = 1 + 0,200 163 84;
  • 14) 0,200 163 84 × 2 = 0 + 0,400 327 68;
  • 15) 0,400 327 68 × 2 = 0 + 0,800 655 36;
  • 16) 0,800 655 36 × 2 = 1 + 0,601 310 72;
  • 17) 0,601 310 72 × 2 = 1 + 0,202 621 44;
  • 18) 0,202 621 44 × 2 = 0 + 0,405 242 88;
  • 19) 0,405 242 88 × 2 = 0 + 0,810 485 76;
  • 20) 0,810 485 76 × 2 = 1 + 0,620 971 52;
  • 21) 0,620 971 52 × 2 = 1 + 0,241 943 04;
  • 22) 0,241 943 04 × 2 = 0 + 0,483 886 08;
  • 23) 0,483 886 08 × 2 = 0 + 0,967 772 16;
  • 24) 0,967 772 16 × 2 = 1 + 0,935 544 32;
  • 25) 0,935 544 32 × 2 = 1 + 0,871 088 64;
  • 26) 0,871 088 64 × 2 = 1 + 0,742 177 28;
  • 27) 0,742 177 28 × 2 = 1 + 0,484 354 56;
  • 28) 0,484 354 56 × 2 = 0 + 0,968 709 12;
  • 29) 0,968 709 12 × 2 = 1 + 0,937 418 24;
  • 30) 0,937 418 24 × 2 = 1 + 0,874 836 48;
  • 31) 0,874 836 48 × 2 = 1 + 0,749 672 96;
  • 32) 0,749 672 96 × 2 = 1 + 0,499 345 92;
  • 33) 0,499 345 92 × 2 = 0 + 0,998 691 84;
  • 34) 0,998 691 84 × 2 = 1 + 0,997 383 68;
  • 35) 0,997 383 68 × 2 = 1 + 0,994 767 36;
  • 36) 0,994 767 36 × 2 = 1 + 0,989 534 72;
  • 37) 0,989 534 72 × 2 = 1 + 0,979 069 44;
  • 38) 0,979 069 44 × 2 = 1 + 0,958 138 88;
  • 39) 0,958 138 88 × 2 = 1 + 0,916 277 76;
  • 40) 0,916 277 76 × 2 = 1 + 0,832 555 52;
  • 41) 0,832 555 52 × 2 = 1 + 0,665 111 04;
  • 42) 0,665 111 04 × 2 = 1 + 0,330 222 08;
  • 43) 0,330 222 08 × 2 = 0 + 0,660 444 16;
  • 44) 0,660 444 16 × 2 = 1 + 0,320 888 32;
  • 45) 0,320 888 32 × 2 = 0 + 0,641 776 64;
  • 46) 0,641 776 64 × 2 = 1 + 0,283 553 28;
  • 47) 0,283 553 28 × 2 = 0 + 0,567 106 56;
  • 48) 0,567 106 56 × 2 = 1 + 0,134 213 12;
  • 49) 0,134 213 12 × 2 = 0 + 0,268 426 24;
  • 50) 0,268 426 24 × 2 = 0 + 0,536 852 48;
  • 51) 0,536 852 48 × 2 = 1 + 0,073 704 96;
  • 52) 0,073 704 96 × 2 = 0 + 0,147 409 92;
  • 53) 0,147 409 92 × 2 = 0 + 0,294 819 84;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (pierdem precizie...)


4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,666 406 27(10) =


0,1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0010 0(2)


5. Numărul pozitiv înainte de normalizare:

27,666 406 27(10) =


1 1011,1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0010 0(2)

6. Normalizează reprezentarea binară a numărului.

Mută virgula cu 4 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


27,666 406 27(10) =


1 1011,1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0010 0(2) =


1 1011,1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0010 0(2) × 20 =


1,1011 1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0010 0(2) × 24


7. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 4


Mantisă (nenormalizată):
1,1011 1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0010 0


8. Ajustează exponentul.

Folosește reprezentarea deplasată pe 11 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(11-1) - 1 =


4 + 2(11-1) - 1 =


(4 + 1 023)(10) =


1 027(10)


9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 1 027 : 2 = 513 + 1;
  • 513 : 2 = 256 + 1;
  • 256 : 2 = 128 + 0;
  • 128 : 2 = 64 + 0;
  • 64 : 2 = 32 + 0;
  • 32 : 2 = 16 + 0;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

10. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


1027(10) =


100 0000 0011(2)


11. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 1011 1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101 0 0100 =


1011 1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101


12. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (11 biți) =
100 0000 0011


Mantisă (52 biți) =
1011 1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101


Numărul zecimal în baza zece 27,666 406 27 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754:
0 - 100 0000 0011 - 1011 1010 1010 1001 1001 1001 1001 1110 1111 0111 1111 1101 0101

(64 biți IEEE 754)
  • Semn (1 bit):

    • 0

      63
  • Exponent (11 biți):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 0

      57
    • 0

      56
    • 0

      55
    • 0

      54
    • 1

      53
    • 1

      52
  • Mantisă (52 biți):

    • 1

      51
    • 0

      50
    • 1

      49
    • 1

      48
    • 1

      47
    • 0

      46
    • 1

      45
    • 0

      44
    • 1

      43
    • 0

      42
    • 1

      41
    • 0

      40
    • 1

      39
    • 0

      38
    • 0

      37
    • 1

      36
    • 1

      35
    • 0

      34
    • 0

      33
    • 1

      32
    • 1

      31
    • 0

      30
    • 0

      29
    • 1

      28
    • 1

      27
    • 0

      26
    • 0

      25
    • 1

      24
    • 1

      23
    • 1

      22
    • 1

      21
    • 0

      20
    • 1

      19
    • 1

      18
    • 1

      17
    • 1

      16
    • 0

      15
    • 1

      14
    • 1

      13
    • 1

      12
    • 1

      11
    • 1

      10
    • 1

      9
    • 1

      8
    • 1

      7
    • 1

      6
    • 0

      5
    • 1

      4
    • 0

      3
    • 1

      2
    • 0

      1
    • 1

      0

Convertește în binar în reprezentare pe 64 de biți, precizie dublă, virgulă mobilă în standard IEEE 754

Un număr în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 e format din trei elemente: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)

Ultimele numere zecimale convertite (transformate) din baza zece în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Numărul 27,666 406 27 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:34 EET (UTC +2)
Numărul 170 335 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:34 EET (UTC +2)
Numărul 9 968 608 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:34 EET (UTC +2)
Numărul 87,549 999 999 999 999 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:34 EET (UTC +2)
Numărul 666 609 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:33 EET (UTC +2)
Numărul -0,145 067 813 487 901 050 851 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:33 EET (UTC +2)
Numărul 64 238 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:33 EET (UTC +2)
Numărul 842 019 166 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:33 EET (UTC +2)
Numărul 4 566 999 934 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:33 EET (UTC +2)
Numărul 20,333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 7 convertit (transformat) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 = ? 29 nov, 00:33 EET (UTC +2)
Toate numerele zecimale convertite (transformate) din sistem zecimal (baza zece) în sistem binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754

Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
  • 2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
  • Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.

Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:

  • 1. Începe cu versiunea pozitivă a numărului:

    |-31,640 215| = 31,640 215;

  • 2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 31 : 2 = 15 + 1;
    • 15 : 2 = 7 + 1;
    • 7 : 2 = 3 + 1;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    31(10) = 1 1111(2)

  • 4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,640 215 × 2 = 1 + 0,280 43;
    • 2) 0,280 43 × 2 = 0 + 0,560 86;
    • 3) 0,560 86 × 2 = 1 + 0,121 72;
    • 4) 0,121 72 × 2 = 0 + 0,243 44;
    • 5) 0,243 44 × 2 = 0 + 0,486 88;
    • 6) 0,486 88 × 2 = 0 + 0,973 76;
    • 7) 0,973 76 × 2 = 1 + 0,947 52;
    • 8) 0,947 52 × 2 = 1 + 0,895 04;
    • 9) 0,895 04 × 2 = 1 + 0,790 08;
    • 10) 0,790 08 × 2 = 1 + 0,580 16;
    • 11) 0,580 16 × 2 = 1 + 0,160 32;
    • 12) 0,160 32 × 2 = 0 + 0,320 64;
    • 13) 0,320 64 × 2 = 0 + 0,641 28;
    • 14) 0,641 28 × 2 = 1 + 0,282 56;
    • 15) 0,282 56 × 2 = 0 + 0,565 12;
    • 16) 0,565 12 × 2 = 1 + 0,130 24;
    • 17) 0,130 24 × 2 = 0 + 0,260 48;
    • 18) 0,260 48 × 2 = 0 + 0,520 96;
    • 19) 0,520 96 × 2 = 1 + 0,041 92;
    • 20) 0,041 92 × 2 = 0 + 0,083 84;
    • 21) 0,083 84 × 2 = 0 + 0,167 68;
    • 22) 0,167 68 × 2 = 0 + 0,335 36;
    • 23) 0,335 36 × 2 = 0 + 0,670 72;
    • 24) 0,670 72 × 2 = 1 + 0,341 44;
    • 25) 0,341 44 × 2 = 0 + 0,682 88;
    • 26) 0,682 88 × 2 = 1 + 0,365 76;
    • 27) 0,365 76 × 2 = 0 + 0,731 52;
    • 28) 0,731 52 × 2 = 1 + 0,463 04;
    • 29) 0,463 04 × 2 = 0 + 0,926 08;
    • 30) 0,926 08 × 2 = 1 + 0,852 16;
    • 31) 0,852 16 × 2 = 1 + 0,704 32;
    • 32) 0,704 32 × 2 = 1 + 0,408 64;
    • 33) 0,408 64 × 2 = 0 + 0,817 28;
    • 34) 0,817 28 × 2 = 1 + 0,634 56;
    • 35) 0,634 56 × 2 = 1 + 0,269 12;
    • 36) 0,269 12 × 2 = 0 + 0,538 24;
    • 37) 0,538 24 × 2 = 1 + 0,076 48;
    • 38) 0,076 48 × 2 = 0 + 0,152 96;
    • 39) 0,152 96 × 2 = 0 + 0,305 92;
    • 40) 0,305 92 × 2 = 0 + 0,611 84;
    • 41) 0,611 84 × 2 = 1 + 0,223 68;
    • 42) 0,223 68 × 2 = 0 + 0,447 36;
    • 43) 0,447 36 × 2 = 0 + 0,894 72;
    • 44) 0,894 72 × 2 = 1 + 0,789 44;
    • 45) 0,789 44 × 2 = 1 + 0,578 88;
    • 46) 0,578 88 × 2 = 1 + 0,157 76;
    • 47) 0,157 76 × 2 = 0 + 0,315 52;
    • 48) 0,315 52 × 2 = 0 + 0,631 04;
    • 49) 0,631 04 × 2 = 1 + 0,262 08;
    • 50) 0,262 08 × 2 = 0 + 0,524 16;
    • 51) 0,524 16 × 2 = 1 + 0,048 32;
    • 52) 0,048 32 × 2 = 0 + 0,096 64;
    • 53) 0,096 64 × 2 = 0 + 0,193 28;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,640 215(10) = 0,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    31,640 215(10) = 1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    31,640 215(10) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111,1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie dublă (64 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:

    Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantisă (normalizată): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Concluzia:

    Semn (1 bit) = 1 (număr negativ)

    Exponent (11 biți) = 100 0000 0011

    Mantisă (52 biți) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este:


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100