Convertește (transformă) numărul 7,501 742 2 în binar în reprezentarea pe 64 biți, precizie dublă, virgulă mobilă în standard IEEE 754, din număr în sistem zecimal în baza zece. Explicații detaliate
Numărul 7,501 742 2(10) convertit și scris în binar în reprezentarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 11 biți pentru exponent, 52 de biți pentru mantisă)
Primii pași pe care îi vom parcurge pentru a face conversia:
Convertește în binar (în baza 2) partea întreagă a numărului.
Convertește în binar partea fracționară a numărului.
1. Întâi convertește în binar (în baza 2) partea întreagă: 7. Împarte numărul în mod repetat la 2.
Notăm mai jos, în ordine, fiecare rest al împărțirilor.
Ne oprim când obținem un cât egal cu zero.
împărțire = cât + rest;
7 : 2 = 3 + 1;
3 : 2 = 1 + 1;
1 : 2 = 0 + 1;
2. Construiește reprezentarea în baza 2 a părții întregi a numărului.
Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.
7(10) =
111(2)
3. Convertește în binar (baza 2) partea fracționară: 0,501 742 2.
Înmulțește numărul în mod repetat cu 2.
Notăm mai jos fiecare parte întreagă a înmulțirilor.
Ne oprim când obținem o parte fracționară egală cu zero.
#) înmulțire = întreg + fracționar;
1) 0,501 742 2 × 2 = 1 + 0,003 484 4;
2) 0,003 484 4 × 2 = 0 + 0,006 968 8;
3) 0,006 968 8 × 2 = 0 + 0,013 937 6;
4) 0,013 937 6 × 2 = 0 + 0,027 875 2;
5) 0,027 875 2 × 2 = 0 + 0,055 750 4;
6) 0,055 750 4 × 2 = 0 + 0,111 500 8;
7) 0,111 500 8 × 2 = 0 + 0,223 001 6;
8) 0,223 001 6 × 2 = 0 + 0,446 003 2;
9) 0,446 003 2 × 2 = 0 + 0,892 006 4;
10) 0,892 006 4 × 2 = 1 + 0,784 012 8;
11) 0,784 012 8 × 2 = 1 + 0,568 025 6;
12) 0,568 025 6 × 2 = 1 + 0,136 051 2;
13) 0,136 051 2 × 2 = 0 + 0,272 102 4;
14) 0,272 102 4 × 2 = 0 + 0,544 204 8;
15) 0,544 204 8 × 2 = 1 + 0,088 409 6;
16) 0,088 409 6 × 2 = 0 + 0,176 819 2;
17) 0,176 819 2 × 2 = 0 + 0,353 638 4;
18) 0,353 638 4 × 2 = 0 + 0,707 276 8;
19) 0,707 276 8 × 2 = 1 + 0,414 553 6;
20) 0,414 553 6 × 2 = 0 + 0,829 107 2;
21) 0,829 107 2 × 2 = 1 + 0,658 214 4;
22) 0,658 214 4 × 2 = 1 + 0,316 428 8;
23) 0,316 428 8 × 2 = 0 + 0,632 857 6;
24) 0,632 857 6 × 2 = 1 + 0,265 715 2;
25) 0,265 715 2 × 2 = 0 + 0,531 430 4;
26) 0,531 430 4 × 2 = 1 + 0,062 860 8;
27) 0,062 860 8 × 2 = 0 + 0,125 721 6;
28) 0,125 721 6 × 2 = 0 + 0,251 443 2;
29) 0,251 443 2 × 2 = 0 + 0,502 886 4;
30) 0,502 886 4 × 2 = 1 + 0,005 772 8;
31) 0,005 772 8 × 2 = 0 + 0,011 545 6;
32) 0,011 545 6 × 2 = 0 + 0,023 091 2;
33) 0,023 091 2 × 2 = 0 + 0,046 182 4;
34) 0,046 182 4 × 2 = 0 + 0,092 364 8;
35) 0,092 364 8 × 2 = 0 + 0,184 729 6;
36) 0,184 729 6 × 2 = 0 + 0,369 459 2;
37) 0,369 459 2 × 2 = 0 + 0,738 918 4;
38) 0,738 918 4 × 2 = 1 + 0,477 836 8;
39) 0,477 836 8 × 2 = 0 + 0,955 673 6;
40) 0,955 673 6 × 2 = 1 + 0,911 347 2;
41) 0,911 347 2 × 2 = 1 + 0,822 694 4;
42) 0,822 694 4 × 2 = 1 + 0,645 388 8;
43) 0,645 388 8 × 2 = 1 + 0,290 777 6;
44) 0,290 777 6 × 2 = 0 + 0,581 555 2;
45) 0,581 555 2 × 2 = 1 + 0,163 110 4;
46) 0,163 110 4 × 2 = 0 + 0,326 220 8;
47) 0,326 220 8 × 2 = 0 + 0,652 441 6;
48) 0,652 441 6 × 2 = 1 + 0,304 883 2;
49) 0,304 883 2 × 2 = 0 + 0,609 766 4;
50) 0,609 766 4 × 2 = 1 + 0,219 532 8;
51) 0,219 532 8 × 2 = 0 + 0,439 065 6;
52) 0,439 065 6 × 2 = 0 + 0,878 131 2;
53) 0,878 131 2 × 2 = 1 + 0,756 262 4;
Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (pierdem precizie...)
4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.
Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:
9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 11 biți.
Folosește din nou tehnica împărțirii repetate la 2:
împărțire = cât + rest;
1 025 : 2 = 512 + 1;
512 : 2 = 256 + 0;
256 : 2 = 128 + 0;
128 : 2 = 64 + 0;
64 : 2 = 32 + 0;
32 : 2 = 16 + 0;
16 : 2 = 8 + 0;
8 : 2 = 4 + 0;
4 : 2 = 2 + 0;
2 : 2 = 1 + 0;
1 : 2 = 0 + 1;
10. Construiește reprezentarea în baza 2 a exponentului ajustat.
Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.
Exponent (ajustat) =
1025(10) =
100 0000 0001(2)
11. Normalizează mantisa.
a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.
b) Ajustează-i lungimea la 52 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).
Numărul zecimal în baza zece 7,501 742 2 convertit și scris în binar în representarea pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754: 0 - 100 0000 0001 - 1110 0000 0001 1100 1000 1011 0101 0001 0000 0001 0111 1010 0101
Convertește în binar în reprezentare pe 64 de biți, precizie dublă, virgulă mobilă în standard IEEE 754
Un număr în reprezentarea în sistem binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 e format din trei elemente: semn (ocupă 1 bit, e fie 0 pentru numere pozitive, fie 1 pentru numere negative), exponent (ocupă 11 biți), mantisă (52 biți)
Ultimele numere zecimale convertite (transformate) din baza zece în sistem binar în reprezentare pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754
Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți
Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:
1. Dacă numărul de convertit e negativ, începe cu versiunea pozitivă a numărului.
2. Convertește întâi partea întreagă, împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
3. Construiește apoi reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor efectuate, începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
4. Convertește apoi partea fracționară. Înmulțește partea fracționara în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate, începând din partea de sus a listei construite mai sus (se iau părțile întregi în ordinea în care au fost obținute).
6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții fie la stânga, fie la dreapta, astfel încât partea întreagă a numărului binar să aibă un singur bit, diferit de '0' (la stânga semnului zecimal să rămână un singur simbol, egal cu 1).
7. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus: Exponent (ajustat) = Exponent (neajustat) + 2(11-1) - 1;
8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 52 biți, fie renunțând la biții în exces din dreapta (pierzând precizie...), fie adaugând tot la dreapta biți setați pe '0'.
Semnul (ocupă 1 bit) e egal fie cu 1, dacă e număr negativ, fie cu 0, dacă e număr pozitiv.
Exemplu: convertește numărul negativ -31,640 215 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie dublă pe 64 de biți:
1. Începe cu versiunea pozitivă a numărului:
|-31,640 215| = 31,640 215;
2. Convertește întâi partea întreagă, 31. Împarte numărul 31 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
împărțire = cât + rest;
31 : 2 = 15 + 1;
15 : 2 = 7 + 1;
7 : 2 = 3 + 1;
3 : 2 = 1 + 1;
1 : 2 = 0 + 1;
Am obținut un cât care este egal cu ZERO => STOP
3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
31(10) = 1 1111(2)
4. Convertește apoi partea fracționară 0,640 215. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
#) înmulțire = întreg + fracționar;
1) 0,640 215 × 2 = 1 + 0,280 43;
2) 0,280 43 × 2 = 0 + 0,560 86;
3) 0,560 86 × 2 = 1 + 0,121 72;
4) 0,121 72 × 2 = 0 + 0,243 44;
5) 0,243 44 × 2 = 0 + 0,486 88;
6) 0,486 88 × 2 = 0 + 0,973 76;
7) 0,973 76 × 2 = 1 + 0,947 52;
8) 0,947 52 × 2 = 1 + 0,895 04;
9) 0,895 04 × 2 = 1 + 0,790 08;
10) 0,790 08 × 2 = 1 + 0,580 16;
11) 0,580 16 × 2 = 1 + 0,160 32;
12) 0,160 32 × 2 = 0 + 0,320 64;
13) 0,320 64 × 2 = 0 + 0,641 28;
14) 0,641 28 × 2 = 1 + 0,282 56;
15) 0,282 56 × 2 = 0 + 0,565 12;
16) 0,565 12 × 2 = 1 + 0,130 24;
17) 0,130 24 × 2 = 0 + 0,260 48;
18) 0,260 48 × 2 = 0 + 0,520 96;
19) 0,520 96 × 2 = 1 + 0,041 92;
20) 0,041 92 × 2 = 0 + 0,083 84;
21) 0,083 84 × 2 = 0 + 0,167 68;
22) 0,167 68 × 2 = 0 + 0,335 36;
23) 0,335 36 × 2 = 0 + 0,670 72;
24) 0,670 72 × 2 = 1 + 0,341 44;
25) 0,341 44 × 2 = 0 + 0,682 88;
26) 0,682 88 × 2 = 1 + 0,365 76;
27) 0,365 76 × 2 = 0 + 0,731 52;
28) 0,731 52 × 2 = 1 + 0,463 04;
29) 0,463 04 × 2 = 0 + 0,926 08;
30) 0,926 08 × 2 = 1 + 0,852 16;
31) 0,852 16 × 2 = 1 + 0,704 32;
32) 0,704 32 × 2 = 1 + 0,408 64;
33) 0,408 64 × 2 = 0 + 0,817 28;
34) 0,817 28 × 2 = 1 + 0,634 56;
35) 0,634 56 × 2 = 1 + 0,269 12;
36) 0,269 12 × 2 = 0 + 0,538 24;
37) 0,538 24 × 2 = 1 + 0,076 48;
38) 0,076 48 × 2 = 0 + 0,152 96;
39) 0,152 96 × 2 = 0 + 0,305 92;
40) 0,305 92 × 2 = 0 + 0,611 84;
41) 0,611 84 × 2 = 1 + 0,223 68;
42) 0,223 68 × 2 = 0 + 0,447 36;
43) 0,447 36 × 2 = 0 + 0,894 72;
44) 0,894 72 × 2 = 1 + 0,789 44;
45) 0,789 44 × 2 = 1 + 0,578 88;
46) 0,578 88 × 2 = 1 + 0,157 76;
47) 0,157 76 × 2 = 0 + 0,315 52;
48) 0,315 52 × 2 = 0 + 0,631 04;
49) 0,631 04 × 2 = 1 + 0,262 08;
50) 0,262 08 × 2 = 0 + 0,524 16;
51) 0,524 16 × 2 = 1 + 0,048 32;
52) 0,048 32 × 2 = 0 + 0,096 64;
53) 0,096 64 × 2 = 0 + 0,193 28;
Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 52) și a fost calculată măcar o parte întreagă
diferită de zero => STOP (pierzând precizie...).
5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:
7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':
9. Ajustează exponentul folosind reprezentarea deplasată pe 11 biți apoi convertește-l din zecimal (baza 10) în binar pe 11 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care e întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea, la 52 biți, prin renunțarea la biții în exces, din dreapta (pierzând precizie...):
Numărul -31,640 215, zecimal, convertit din sistem zecimal (baza 10) în binar pe 64 de biți, precizie dublă, în virgulă mobilă în standard IEEE 754 este: