Scrie 17 470 541 din baza 10 în baza 2, în sistem binar

Vezi cum face convertorul scrierea numărului 17 470 541(10) din baza 10 (din zecimal) în baza 2 (sistem binar)

Care sunt pașii pentru scrierea numărului în sistem zecimal
17 470 541 din baza 10 în baza 2, în cod binar?

  • Un număr scris în baza zece, sau în sistem zecimal, este un număr scris folosind cifrele de la 0 la 9. Un număr scris în baza doi, sau în sistem binar, este un număr scris folosind doar cifrele 0 și 1.

1. Împarte numărul în mod repetat la 2:

Ține minte fiecare rest al împărțirilor.

Ne oprim atunci când se obține un cât egal cu zero.


  • împărțire = cât + rest;
  • 17 470 541 : 2 = 8 735 270 + 1;
  • 8 735 270 : 2 = 4 367 635 + 0;
  • 4 367 635 : 2 = 2 183 817 + 1;
  • 2 183 817 : 2 = 1 091 908 + 1;
  • 1 091 908 : 2 = 545 954 + 0;
  • 545 954 : 2 = 272 977 + 0;
  • 272 977 : 2 = 136 488 + 1;
  • 136 488 : 2 = 68 244 + 0;
  • 68 244 : 2 = 34 122 + 0;
  • 34 122 : 2 = 17 061 + 0;
  • 17 061 : 2 = 8 530 + 1;
  • 8 530 : 2 = 4 265 + 0;
  • 4 265 : 2 = 2 132 + 1;
  • 2 132 : 2 = 1 066 + 0;
  • 1 066 : 2 = 533 + 0;
  • 533 : 2 = 266 + 1;
  • 266 : 2 = 133 + 0;
  • 133 : 2 = 66 + 1;
  • 66 : 2 = 33 + 0;
  • 33 : 2 = 16 + 1;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2:

Se ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

Numărul în sistem zecimal 17 470 541(10) convertit și scris din baza 10 în baza 2, ca binar fără semn:

17 470 541 (baza 10) = 1 0000 1010 1001 0100 0100 1101 (baza 2)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.


Cum convertești numere întregi fără semn din sistem zecimal (baza 10) în cod binar = pur și simplu convertește din baza 10 în baza 2.

Urmează pașii de mai jos pentru a converti un număr întreg fără semn din baza zece în baza doi:

  • 1. Împarte numărul zecimal care trebuie convertit în sistem binar în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până când obținem un CÂT ce este egal cu ZERO.
  • 2. Construiește reprezentarea numărului întreg pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor devine primul simbol (situat cel mai la stanga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).

Exemplu: convertește numărul întreg pozitiv 55 din sistem zecimal (baza zece) în cod binar (baza doi):

  • 1. Împarte numărul 55 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât egal cu zero:
    • împărțire = cât + rest;
    • 55 : 2 = 27 + 1;
    • 27 : 2 = 13 + 1;
    • 13 : 2 = 6 + 1;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
  • 2. Construiește reprezentarea numărului întreg pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
  • 55(10) = 11 0111(2)
  • Numărul 5510, întreg pozitiv (fără semn), convertit din sistem zecimal (baza 10) în binar fără semn (baza 2) = 11 0111(2)