Convertor: scrierea numărului 30 011 885 din baza 10 (din zecimal) în baza 2 (sistem binar)

Vezi cum face convertorul scrierea numărului 30 011 885(10) din baza 10 (din zecimal) în baza 2 (sistem binar)

Care sunt pașii pentru scrierea numărului în sistem zecimal
30 011 885 din baza 10 în baza 2, în cod binar?

  • Un număr scris în baza zece, sau în sistem zecimal, este un număr scris folosind cifrele de la 0 la 9. Un număr scris în baza doi, sau în sistem binar, este un număr scris folosind doar cifrele 0 și 1.

1. Împarte numărul în mod repetat la 2:

Ține minte fiecare rest al împărțirilor.

Ne oprim atunci când se obține un cât egal cu zero.


  • împărțire = cât + rest;
  • 30 011 885 : 2 = 15 005 942 + 1;
  • 15 005 942 : 2 = 7 502 971 + 0;
  • 7 502 971 : 2 = 3 751 485 + 1;
  • 3 751 485 : 2 = 1 875 742 + 1;
  • 1 875 742 : 2 = 937 871 + 0;
  • 937 871 : 2 = 468 935 + 1;
  • 468 935 : 2 = 234 467 + 1;
  • 234 467 : 2 = 117 233 + 1;
  • 117 233 : 2 = 58 616 + 1;
  • 58 616 : 2 = 29 308 + 0;
  • 29 308 : 2 = 14 654 + 0;
  • 14 654 : 2 = 7 327 + 0;
  • 7 327 : 2 = 3 663 + 1;
  • 3 663 : 2 = 1 831 + 1;
  • 1 831 : 2 = 915 + 1;
  • 915 : 2 = 457 + 1;
  • 457 : 2 = 228 + 1;
  • 228 : 2 = 114 + 0;
  • 114 : 2 = 57 + 0;
  • 57 : 2 = 28 + 1;
  • 28 : 2 = 14 + 0;
  • 14 : 2 = 7 + 0;
  • 7 : 2 = 3 + 1;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2:

Se ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

Numărul în sistem zecimal 30 011 885(10) convertit și scris din baza 10 în baza 2, ca binar fără semn:

30 011 885 (baza 10) = 1 1100 1001 1111 0001 1110 1101 (baza 2)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.


Cum convertești numere întregi fără semn din sistem zecimal (baza 10) în cod binar = pur și simplu convertește din baza 10 în baza 2.

Urmează pașii de mai jos pentru a converti un număr întreg fără semn din baza zece în baza doi:

  • 1. Împarte numărul zecimal care trebuie convertit în sistem binar în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până când obținem un CÂT ce este egal cu ZERO.
  • 2. Construiește reprezentarea numărului întreg pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor devine primul simbol (situat cel mai la stanga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).

Exemplu: convertește numărul întreg pozitiv 55 din sistem zecimal (baza zece) în cod binar (baza doi):

  • 1. Împarte numărul 55 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât egal cu zero:
    • împărțire = cât + rest;
    • 55 : 2 = 27 + 1;
    • 27 : 2 = 13 + 1;
    • 13 : 2 = 6 + 1;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
  • 2. Construiește reprezentarea numărului întreg pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
  • 55(10) = 11 0111(2)
  • Numărul 5510, întreg pozitiv (fără semn), convertit din sistem zecimal (baza 10) în binar fără semn (baza 2) = 11 0111(2)