421 657 053 Numărul zecimal în baza 10 scris în baza 2, în sistem binar

Vezi cum face convertorul scrierea numărului 421 657 053(10) din baza 10 (din zecimal) în baza 2 (sistem binar)

Care sunt pașii pentru scrierea numărului în sistem zecimal
421 657 053 din baza 10 în baza 2, în cod binar?

  • Un număr scris în baza zece, sau în sistem zecimal, este un număr scris folosind cifrele de la 0 la 9. Un număr scris în baza doi, sau în sistem binar, este un număr scris folosind doar cifrele 0 și 1.

1. Împarte numărul în mod repetat la 2:

Ține minte fiecare rest al împărțirilor.

Ne oprim atunci când se obține un cât egal cu zero.


  • împărțire = cât + rest;
  • 421 657 053 : 2 = 210 828 526 + 1;
  • 210 828 526 : 2 = 105 414 263 + 0;
  • 105 414 263 : 2 = 52 707 131 + 1;
  • 52 707 131 : 2 = 26 353 565 + 1;
  • 26 353 565 : 2 = 13 176 782 + 1;
  • 13 176 782 : 2 = 6 588 391 + 0;
  • 6 588 391 : 2 = 3 294 195 + 1;
  • 3 294 195 : 2 = 1 647 097 + 1;
  • 1 647 097 : 2 = 823 548 + 1;
  • 823 548 : 2 = 411 774 + 0;
  • 411 774 : 2 = 205 887 + 0;
  • 205 887 : 2 = 102 943 + 1;
  • 102 943 : 2 = 51 471 + 1;
  • 51 471 : 2 = 25 735 + 1;
  • 25 735 : 2 = 12 867 + 1;
  • 12 867 : 2 = 6 433 + 1;
  • 6 433 : 2 = 3 216 + 1;
  • 3 216 : 2 = 1 608 + 0;
  • 1 608 : 2 = 804 + 0;
  • 804 : 2 = 402 + 0;
  • 402 : 2 = 201 + 0;
  • 201 : 2 = 100 + 1;
  • 100 : 2 = 50 + 0;
  • 50 : 2 = 25 + 0;
  • 25 : 2 = 12 + 1;
  • 12 : 2 = 6 + 0;
  • 6 : 2 = 3 + 0;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea numărului pozitiv în baza 2:

Se ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

Numărul în sistem zecimal 421 657 053(10) convertit și scris din baza 10 în baza 2, ca binar fără semn:

421 657 053 (baza 10) = 1 1001 0010 0001 1111 1001 1101 1101 (baza 2)

Spații au fost folosite pentru a grupa digiți, în binar câte 4, în zecimal câte 3.


Cum convertești numere întregi fără semn din sistem zecimal (baza 10) în cod binar = pur și simplu convertește din baza 10 în baza 2.

Urmează pașii de mai jos pentru a converti un număr întreg fără semn din baza zece în baza doi:

  • 1. Împarte numărul zecimal care trebuie convertit în sistem binar în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până când obținem un CÂT ce este egal cu ZERO.
  • 2. Construiește reprezentarea numărului întreg pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor devine primul simbol (situat cel mai la stanga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).

Exemplu: convertește numărul întreg pozitiv 55 din sistem zecimal (baza zece) în cod binar (baza doi):

  • 1. Împarte numărul 55 în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât egal cu zero:
    • împărțire = cât + rest;
    • 55 : 2 = 27 + 1;
    • 27 : 2 = 13 + 1;
    • 13 : 2 = 6 + 1;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
  • 2. Construiește reprezentarea numărului întreg pozitiv în baza 2, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:
  • 55(10) = 11 0111(2)
  • Numărul 5510, întreg pozitiv (fără semn), convertit din sistem zecimal (baza 10) în binar fără semn (baza 2) = 11 0111(2)