1,020 244 821 092 278 719 397 044 scris ca binar pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754

Scriere 1,020 244 821 092 278 719 397 044(10) din zecimal în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

Care sunt pașii pentru a scrie numărul
1,020 244 821 092 278 719 397 044(10) din zecimal în binar în reprezentarea pe 32 biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

1. Întâi convertește în binar (în baza 2) partea întreagă: 1.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

1(10) =


1(2)


3. Convertește în binar (baza 2) partea fracționară: 0,020 244 821 092 278 719 397 044.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,020 244 821 092 278 719 397 044 × 2 = 0 + 0,040 489 642 184 557 438 794 088;
  • 2) 0,040 489 642 184 557 438 794 088 × 2 = 0 + 0,080 979 284 369 114 877 588 176;
  • 3) 0,080 979 284 369 114 877 588 176 × 2 = 0 + 0,161 958 568 738 229 755 176 352;
  • 4) 0,161 958 568 738 229 755 176 352 × 2 = 0 + 0,323 917 137 476 459 510 352 704;
  • 5) 0,323 917 137 476 459 510 352 704 × 2 = 0 + 0,647 834 274 952 919 020 705 408;
  • 6) 0,647 834 274 952 919 020 705 408 × 2 = 1 + 0,295 668 549 905 838 041 410 816;
  • 7) 0,295 668 549 905 838 041 410 816 × 2 = 0 + 0,591 337 099 811 676 082 821 632;
  • 8) 0,591 337 099 811 676 082 821 632 × 2 = 1 + 0,182 674 199 623 352 165 643 264;
  • 9) 0,182 674 199 623 352 165 643 264 × 2 = 0 + 0,365 348 399 246 704 331 286 528;
  • 10) 0,365 348 399 246 704 331 286 528 × 2 = 0 + 0,730 696 798 493 408 662 573 056;
  • 11) 0,730 696 798 493 408 662 573 056 × 2 = 1 + 0,461 393 596 986 817 325 146 112;
  • 12) 0,461 393 596 986 817 325 146 112 × 2 = 0 + 0,922 787 193 973 634 650 292 224;
  • 13) 0,922 787 193 973 634 650 292 224 × 2 = 1 + 0,845 574 387 947 269 300 584 448;
  • 14) 0,845 574 387 947 269 300 584 448 × 2 = 1 + 0,691 148 775 894 538 601 168 896;
  • 15) 0,691 148 775 894 538 601 168 896 × 2 = 1 + 0,382 297 551 789 077 202 337 792;
  • 16) 0,382 297 551 789 077 202 337 792 × 2 = 0 + 0,764 595 103 578 154 404 675 584;
  • 17) 0,764 595 103 578 154 404 675 584 × 2 = 1 + 0,529 190 207 156 308 809 351 168;
  • 18) 0,529 190 207 156 308 809 351 168 × 2 = 1 + 0,058 380 414 312 617 618 702 336;
  • 19) 0,058 380 414 312 617 618 702 336 × 2 = 0 + 0,116 760 828 625 235 237 404 672;
  • 20) 0,116 760 828 625 235 237 404 672 × 2 = 0 + 0,233 521 657 250 470 474 809 344;
  • 21) 0,233 521 657 250 470 474 809 344 × 2 = 0 + 0,467 043 314 500 940 949 618 688;
  • 22) 0,467 043 314 500 940 949 618 688 × 2 = 0 + 0,934 086 629 001 881 899 237 376;
  • 23) 0,934 086 629 001 881 899 237 376 × 2 = 1 + 0,868 173 258 003 763 798 474 752;
  • 24) 0,868 173 258 003 763 798 474 752 × 2 = 1 + 0,736 346 516 007 527 596 949 504;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (Pierdem din precizie - numărul convertit pe care îl vom obține în final va fi doar o foarte bună aproximare a celui inițial).


4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,020 244 821 092 278 719 397 044(10) =


0,0000 0101 0010 1110 1100 0011(2)

5. Numărul pozitiv înainte de normalizare:

1,020 244 821 092 278 719 397 044(10) =


1,0000 0101 0010 1110 1100 0011(2)

6. Normalizează reprezentarea binară a numărului.

Mută virgula cu 0 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


1,020 244 821 092 278 719 397 044(10) =


1,0000 0101 0010 1110 1100 0011(2) =


1,0000 0101 0010 1110 1100 0011(2) × 20


7. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 0


Mantisă (nenormalizată):
1,0000 0101 0010 1110 1100 0011


8. Ajustează exponentul.

Folosește reprezentarea deplasată pe 8 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(8-1) - 1 =


0 + 2(8-1) - 1 =


(0 + 127)(10) =


127(10)


9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 8 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 127 : 2 = 63 + 1;
  • 63 : 2 = 31 + 1;
  • 31 : 2 = 15 + 1;
  • 15 : 2 = 7 + 1;
  • 7 : 2 = 3 + 1;
  • 3 : 2 = 1 + 1;
  • 1 : 2 = 0 + 1;

10. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


127(10) =


0111 1111(2)


11. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 23 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 000 0010 1001 0111 0110 0001 1 =


000 0010 1001 0111 0110 0001


12. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (8 biți) =
0111 1111


Mantisă (23 biți) =
000 0010 1001 0111 0110 0001


Numărul zecimal 1,020 244 821 092 278 719 397 044 scris în binar în representarea pe 32 biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

0 - 0111 1111 - 000 0010 1001 0111 0110 0001


Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Dacă numărul de convertit este negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Se convertește întâi partea întreagă; împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor de mai sus, începând din partea de sus a listei construite (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții la stânga (sau, dacă e cazul, la dreapta) astfel încât partea întreagă a acestuia să mai conțină un singur bit, diferit de '0'.
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 23 biți, fie renunțând la biții în exces, din dreapta (pierzând precizie...) fie adaugând tot la dreapta biți setați pe '0'.
  • 9. Semnul (ocupă 1 bit) este egal fie cu 1, dacă este un număr negativ, fie cu 0, dacă e un număr pozitiv.

Exemplu: convertește numărul negativ -25,347 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Se începe cu versiunea pozitivă a numărului:

    |-25,347| = 25,347;

  • 2. Convertește întâi partea întreagă, 25. Împarte în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 25 : 2 = 12 + 1;
    • 12 : 2 = 6 + 0;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    25(10) = 1 1001(2)

  • 4. Convertește apoi partea fracționară 0,347. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,347 × 2 = 0 + 0,694;
    • 2) 0,694 × 2 = 1 + 0,388;
    • 3) 0,388 × 2 = 0 + 0,776;
    • 4) 0,776 × 2 = 1 + 0,552;
    • 5) 0,552 × 2 = 1 + 0,104;
    • 6) 0,104 × 2 = 0 + 0,208
    • 7) 0,208 × 2 = 0 + 0,416;
    • 8) 0,416 × 2 = 0 + 0,832;
    • 9) 0,832 × 2 = 1 + 0,664;
    • 10) 0,664 × 2 = 1 + 0,328;
    • 11) 0,328 × 2 = 0 + 0,656;
    • 12) 0,656 × 2 = 1 + 0,312;
    • 13) 0,312 × 2 = 0 + 0,624;
    • 14) 0,624 × 2 = 1 + 0,248;
    • 15) 0,248 × 2 = 0 + 0,496;
    • 16) 0,496 × 2 = 0 + 0,992;
    • 17) 0,992 × 2 = 1 + 0,984;
    • 18) 0,984 × 2 = 1 + 0,968;
    • 19) 0,968 × 2 = 1 + 0,936;
    • 20) 0,936 × 2 = 1 + 0,872;
    • 21) 0,872 × 2 = 1 + 0,744;
    • 22) 0,744 × 2 = 1 + 0,488;
    • 23) 0,488 × 2 = 0 + 0,976;
    • 24) 0,976 × 2 = 1 + 0,952;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 23) și a fost găsită prin calcule măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,347(10) = 0,0101 1000 1101 0100 1111 1101(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    25,347(10) = 1 1001,0101 1000 1101 0100 1111 1101(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    25,347(10) =
    1 1001,0101 1000 1101 0100 1111 1101(2) =
    1 1001,0101 1000 1101 0100 1111 1101(2) × 20 =
    1,1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Până în acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar (baza 2) pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus, ținând minte toate resturile, ce vor alcătui numărul în binar:

    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea la 23 biți, prin renunțarea la biții în exces, cei din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101

    Mantisă (normalizată): 100 1010 1100 0110 1010 0111

  • Concluzia:

    Semn (1 bit) = 1 (un număr negativ)

    Exponent (8 biți) = 1000 0011

    Mantisă (23 biți) = 100 1010 1100 0110 1010 0111

  • Numărul -25,347 convertit din sistem zecimal (baza 10) în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 este:
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111