4,390 000 000 000 000 001 64 scris ca binar pe 32 biți, precizie simplă, virgulă mobilă în standard IEEE 754

Scriere 4,390 000 000 000 000 001 64(10) din zecimal în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

Care sunt pașii pentru a scrie numărul
4,390 000 000 000 000 001 64(10) din zecimal în binar în reprezentarea pe 32 biți, precizie simplă, în virgulă mobilă în standard IEEE 754 (1 bit pentru semn, 8 biți pentru exponent, 23 de biți pentru mantisă)

1. Întâi convertește în binar (în baza 2) partea întreagă: 4.
Împarte numărul în mod repetat la 2.

Notăm mai jos, în ordine, fiecare rest al împărțirilor.

Ne oprim când obținem un cât egal cu zero.


  • împărțire = cât + rest;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

2. Construiește reprezentarea în baza 2 a părții întregi a numărului.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.

4(10) =


100(2)


3. Convertește în binar (baza 2) partea fracționară: 0,390 000 000 000 000 001 64.

Înmulțește numărul în mod repetat cu 2.


Notăm mai jos fiecare parte întreagă a înmulțirilor.


Ne oprim când obținem o parte fracționară egală cu zero.


  • #) înmulțire = întreg + fracționar;
  • 1) 0,390 000 000 000 000 001 64 × 2 = 0 + 0,780 000 000 000 000 003 28;
  • 2) 0,780 000 000 000 000 003 28 × 2 = 1 + 0,560 000 000 000 000 006 56;
  • 3) 0,560 000 000 000 000 006 56 × 2 = 1 + 0,120 000 000 000 000 013 12;
  • 4) 0,120 000 000 000 000 013 12 × 2 = 0 + 0,240 000 000 000 000 026 24;
  • 5) 0,240 000 000 000 000 026 24 × 2 = 0 + 0,480 000 000 000 000 052 48;
  • 6) 0,480 000 000 000 000 052 48 × 2 = 0 + 0,960 000 000 000 000 104 96;
  • 7) 0,960 000 000 000 000 104 96 × 2 = 1 + 0,920 000 000 000 000 209 92;
  • 8) 0,920 000 000 000 000 209 92 × 2 = 1 + 0,840 000 000 000 000 419 84;
  • 9) 0,840 000 000 000 000 419 84 × 2 = 1 + 0,680 000 000 000 000 839 68;
  • 10) 0,680 000 000 000 000 839 68 × 2 = 1 + 0,360 000 000 000 001 679 36;
  • 11) 0,360 000 000 000 001 679 36 × 2 = 0 + 0,720 000 000 000 003 358 72;
  • 12) 0,720 000 000 000 003 358 72 × 2 = 1 + 0,440 000 000 000 006 717 44;
  • 13) 0,440 000 000 000 006 717 44 × 2 = 0 + 0,880 000 000 000 013 434 88;
  • 14) 0,880 000 000 000 013 434 88 × 2 = 1 + 0,760 000 000 000 026 869 76;
  • 15) 0,760 000 000 000 026 869 76 × 2 = 1 + 0,520 000 000 000 053 739 52;
  • 16) 0,520 000 000 000 053 739 52 × 2 = 1 + 0,040 000 000 000 107 479 04;
  • 17) 0,040 000 000 000 107 479 04 × 2 = 0 + 0,080 000 000 000 214 958 08;
  • 18) 0,080 000 000 000 214 958 08 × 2 = 0 + 0,160 000 000 000 429 916 16;
  • 19) 0,160 000 000 000 429 916 16 × 2 = 0 + 0,320 000 000 000 859 832 32;
  • 20) 0,320 000 000 000 859 832 32 × 2 = 0 + 0,640 000 000 001 719 664 64;
  • 21) 0,640 000 000 001 719 664 64 × 2 = 1 + 0,280 000 000 003 439 329 28;
  • 22) 0,280 000 000 003 439 329 28 × 2 = 0 + 0,560 000 000 006 878 658 56;
  • 23) 0,560 000 000 006 878 658 56 × 2 = 1 + 0,120 000 000 013 757 317 12;
  • 24) 0,120 000 000 013 757 317 12 × 2 = 0 + 0,240 000 000 027 514 634 24;

Nicio parte fracționară egală cu zero n-a fost obținută. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă) și am obținut măcar o parte întreagă diferită de zero => STOP (Pierdem din precizie - numărul convertit pe care îl vom obține în final va fi doar o foarte bună aproximare a celui inițial).


4. Construiește reprezentarea în baza 2 a părții fracționare a numărului.

Ia fiecare parte întreagă a rezultatelor înmulțirilor, începând din partea de sus a listei construite:


0,390 000 000 000 000 001 64(10) =


0,0110 0011 1101 0111 0000 1010(2)

5. Numărul pozitiv înainte de normalizare:

4,390 000 000 000 000 001 64(10) =


100,0110 0011 1101 0111 0000 1010(2)

6. Normalizează reprezentarea binară a numărului.

Mută virgula cu 2 poziții la stânga, astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de 0:


4,390 000 000 000 000 001 64(10) =


100,0110 0011 1101 0111 0000 1010(2) =


100,0110 0011 1101 0111 0000 1010(2) × 20 =


1,0001 1000 1111 0101 1100 0010 10(2) × 22


7. Până la acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

Semn 0 (un număr pozitiv)


Exponent (neajustat): 2


Mantisă (nenormalizată):
1,0001 1000 1111 0101 1100 0010 10


8. Ajustează exponentul.

Folosește reprezentarea deplasată pe 8 biți:


Exponent (ajustat) =


Exponent (neajustat) + 2(8-1) - 1 =


2 + 2(8-1) - 1 =


(2 + 127)(10) =


129(10)


9. Convertește exponentul ajustat din zecimal (baza 10) în binar pe 8 biți.

Folosește din nou tehnica împărțirii repetate la 2:


  • împărțire = cât + rest;
  • 129 : 2 = 64 + 1;
  • 64 : 2 = 32 + 0;
  • 32 : 2 = 16 + 0;
  • 16 : 2 = 8 + 0;
  • 8 : 2 = 4 + 0;
  • 4 : 2 = 2 + 0;
  • 2 : 2 = 1 + 0;
  • 1 : 2 = 0 + 1;

10. Construiește reprezentarea în baza 2 a exponentului ajustat.

Ia fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus.


Exponent (ajustat) =


129(10) =


1000 0001(2)


11. Normalizează mantisa.

a) Renunță la primul bit, cel mai din stânga, care e întotdeauna 1, și la separatorul zecimal, dacă e cazul.


b) Ajustează-i lungimea la 23 biți, prin renunțarea la biții în exces, din dreapta (dacă măcar unul din acești biți în exces e setat pe 1, se pierde din precizie...).


Mantisă (normalizată) =


1. 000 1100 0111 1010 1110 0001 010 =


000 1100 0111 1010 1110 0001


12. Cele trei elemente care alcătuiesc reprezentarea numărului în sistem binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

Semn (1 bit) =
0 (un număr pozitiv)


Exponent (8 biți) =
1000 0001


Mantisă (23 biți) =
000 1100 0111 1010 1110 0001


Numărul zecimal 4,390 000 000 000 000 001 64 scris în binar în representarea pe 32 biți, precizie simplă, în virgulă mobilă în standard IEEE 754:

0 - 1000 0001 - 000 1100 0111 1010 1110 0001


Cum să convertești numere zecimale din sistem zecimal (baza 10) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți

Urmează pașii de mai jos pentru a converti un număr zecimal (cu virgulă) din baza zece în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Dacă numărul de convertit este negativ, se începe cu versiunea pozitivă a numărului.
  • 2. Se convertește întâi partea întreagă; împarte în mod repetat la 2 reprezentarea pozitivă a numărului întreg cu semn care trebuie convertit în sistem binar, ținând minte fiecare rest al împărțirilor. Atunci când găsim un CÂT care e egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus. Astfel, ultimul rest al împărțirilor de la punctul de mai sus devine primul simbol (situat cel mai la stânga) al numărului în baza doi, în timp ce primul rest devine ultimul simbol (situat cel mai la dreapta).
  • 4. Convertește apoi partea fracționară. Înmulțește în mod repetat cu 2, până se obține o parte fracționară egală cu zero, ținând minte fiecare parte întreagă a înmulțirilor.
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor de mai sus, începând din partea de sus a listei construite (se iau părțile întregi în ordinea în care au fost obținute).
  • 6. Normalizează reprezentarea binară a numărului, mutând virgula cu "n" poziții la stânga (sau, dacă e cazul, la dreapta) astfel încât partea întreagă a acestuia să mai conțină un singur bit, diferit de '0'.
  • 7. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus:
    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1;
  • 8. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal, dacă e cazul) și ajustându-i lungimea, la 23 biți, fie renunțând la biții în exces, din dreapta (pierzând precizie...) fie adaugând tot la dreapta biți setați pe '0'.
  • 9. Semnul (ocupă 1 bit) este egal fie cu 1, dacă este un număr negativ, fie cu 0, dacă e un număr pozitiv.

Exemplu: convertește numărul negativ -25,347 din sistem zecimal (baza zece) în sistem binar în virgulă mobilă în reprezentarea IEEE 754, precizie simplă pe 32 de biți:

  • 1. Se începe cu versiunea pozitivă a numărului:

    |-25,347| = 25,347;

  • 2. Convertește întâi partea întreagă, 25. Împarte în mod repetat la 2, ținând minte fiecare rest al împărțirilor, până obținem un cât care este egal cu zero:
    • împărțire = cât + rest;
    • 25 : 2 = 12 + 1;
    • 12 : 2 = 6 + 0;
    • 6 : 2 = 3 + 0;
    • 3 : 2 = 1 + 1;
    • 1 : 2 = 0 + 1;
    • Am obținut un cât care este egal cu ZERO => STOP
  • 3. Construiește reprezentarea în baza 2 a părții întregi a numărului, luând fiecare rest al împărțirilor începând din partea de jos a listei construite mai sus:

    25(10) = 1 1001(2)

  • 4. Convertește apoi partea fracționară 0,347. Înmulțește în mod repetat cu 2, ținând minte fiecare parte întreagă a înmulțirilor, până obținem o parte fracționară egală cu zero:
    • #) înmulțire = întreg + fracționar;
    • 1) 0,347 × 2 = 0 + 0,694;
    • 2) 0,694 × 2 = 1 + 0,388;
    • 3) 0,388 × 2 = 0 + 0,776;
    • 4) 0,776 × 2 = 1 + 0,552;
    • 5) 0,552 × 2 = 1 + 0,104;
    • 6) 0,104 × 2 = 0 + 0,208
    • 7) 0,208 × 2 = 0 + 0,416;
    • 8) 0,416 × 2 = 0 + 0,832;
    • 9) 0,832 × 2 = 1 + 0,664;
    • 10) 0,664 × 2 = 1 + 0,328;
    • 11) 0,328 × 2 = 0 + 0,656;
    • 12) 0,656 × 2 = 1 + 0,312;
    • 13) 0,312 × 2 = 0 + 0,624;
    • 14) 0,624 × 2 = 1 + 0,248;
    • 15) 0,248 × 2 = 0 + 0,496;
    • 16) 0,496 × 2 = 0 + 0,992;
    • 17) 0,992 × 2 = 1 + 0,984;
    • 18) 0,984 × 2 = 1 + 0,968;
    • 19) 0,968 × 2 = 1 + 0,936;
    • 20) 0,936 × 2 = 1 + 0,872;
    • 21) 0,872 × 2 = 1 + 0,744;
    • 22) 0,744 × 2 = 1 + 0,488;
    • 23) 0,488 × 2 = 0 + 0,976;
    • 24) 0,976 × 2 = 1 + 0,952;
    • Nicio parte fracționară egală cu zero n-a fost obținută prin calcule. Însă am efectuat un număr suficient de iterații (peste limita de Mantisă = 23) și a fost găsită prin calcule măcar o parte întreagă diferită de zero => STOP (pierzând precizie...).
  • 5. Construiește reprezentarea în baza 2 a părții fracționare a numărului, luând fiecare parte întreagă a rezultatelor înmulțirilor efectuate anterior, începând din partea de sus a listei construite:

    0,347(10) = 0,0101 1000 1101 0100 1111 1101(2)

  • 6. Recapitulare - numărul pozitiv înainte de normalizare:

    25,347(10) = 1 1001,0101 1000 1101 0100 1111 1101(2)

  • 7. Normalizează reprezentarea binară a numărului, mutând virgula cu 4 poziții la stânga astfel încât partea întreagă a acestuia să aibă un singur bit, diferit de '0':

    25,347(10) =
    1 1001,0101 1000 1101 0100 1111 1101(2) =
    1 1001,0101 1000 1101 0100 1111 1101(2) × 20 =
    1,1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Până în acest moment avem următoarele elemente ce vor alcătui numărul binar în reprezentare IEEE 754, precizie simplă (32 biți):

    Semn: 1 (număr negativ);

    Exponent (neajustat): 4;

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101;

  • 9. Ajustează exponentul folosind reprezentarea deplasată pe 8 biți apoi convertește-l din zecimal (baza 10) în binar (baza 2) pe 8 biți, folosind tehnica împărțirii repetate la 2, așa cum am mai arătat mai sus, ținând minte toate resturile, ce vor alcătui numărul în binar:

    Exponent (ajustat) = Exponent (neajustat) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalizează mantisa, renunțând la primul bit (cel mai din stânga), care este întotdeauna '1' (și la semnul zecimal) și ajustându-i lungimea la 23 biți, prin renunțarea la biții în exces, cei din dreapta (pierzând precizie...):

    Mantisă (nenormalizată): 1,1001 0101 1000 1101 0100 1111 1101

    Mantisă (normalizată): 100 1010 1100 0110 1010 0111

  • Concluzia:

    Semn (1 bit) = 1 (un număr negativ)

    Exponent (8 biți) = 1000 0011

    Mantisă (23 biți) = 100 1010 1100 0110 1010 0111

  • Numărul -25,347 convertit din sistem zecimal (baza 10) în binar pe 32 de biți, precizie simplă, în virgulă mobilă în standard IEEE 754 este:
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111